refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 75 results
Sort by

Filters

Technology

Platform

accession-icon SRP050563
Human Promoters Are Intrinsically Directional
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Divergent transcription, in which reverse-oriented transcripts occur upstream of eukaryotic promoters in regions devoid of annotated genes, has been suggested to be a general property of active promoters. Here we show that the human basal RNA polymerase II transcriptional machinery and core promoter are inherently unidirectional, and that reverse-oriented transcripts originate from their own cognate reverse-directed core promoters. In vitro transcription analysis and mapping of nascent transcripts in cells revealed that core promoters are unidirectional and that sequences at reverse start sites are similar to those of their forward counterparts. The use of DNase I accessibility to define proximal promoter borders revealed that about half of promoters are unidirectional and that these unidirectional promoters are depleted at their upstream edges of reverse core promoter sequences and their associated chromatin features. Divergent transcription is thus not an inherent property of the transcription process, but rather the consequence of the presence of both forward- and reverse-directed core promoters. Overall design: Using 5''-GRO-seq and GRO-seq to determine mechanisms of divergent transcription initiation

Publication Title

Human promoters are intrinsically directional.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4356
Myc Activation in Beta Cells in vivo
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Deregulated expression of the Myc transcription factor is a frequent causal mutation in human cancer. Thousands of putative Myc target genes have been identified in in vitro studies, indicating that Myc exerts highly pleiotropic effects within cells and tissues. However, the complexity and diversity of Myc gene targets has confounded attempts at identifying which of these genes are the critical targets mediating Myc-driven tumorigenesis in vivo. Acute activation of Myc in a reversibly switchable transgenic model of Myc-mediated cell tumorigenesis induces rapid tumor onset whereas subsequent Myc de-activation triggers equally rapid tumor regression. Thus, sustained Myc activity is required for tumor maintenance. We have used this reversibly switchable kinetic tumor model in combination with high-density oligonucleotide microarrays to develop an unbiased strategy for identifying candidate Myc-regulated genes responsible for maintenance of Myc-dependent tumors. Consistent with known Myc functions, some Myc-regulated genes are involved in cell growth, cycle and proliferation. In addition, however, many Myc-regulated genes are specific to cells, indicating that a significant component of Myc action is cell-type specific. Finally, we identify a very restricted cadre of genes whose expression is inversely regulated upon Myc activation-induced tumor progression and de-activation-induced tumor regression. By definition, such genes are candidates for tumor maintenance functions. Combining reversibly switchable, transgenic models of tumor formation and regression with genomic profiling offers a novel strategy with which to deconvolute the complexities of oncogenic signaling pathways in vivo

Publication Title

Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP093699
Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of the study was to integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signalling networks, relevant for rheumatoid arthritis (RA). Method:RNA-seq based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated RA patients, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of “connector” genes derived from pathway analysis was then tested for differential expression in the initial discovery cohort. Results: 11 qualifying genes were selected for pathway analysis and grouped into 2 evidence-based functional networks, containing 29 and 27 additional “connector” molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. 3 genes showed similar expression difference in both treated and non-treated RA patients and additional nine genes were differentially expressed in at least one patients' group compared to healthy controls. Conclusion: Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes in the pathogenesis of RA. Overall design: Illumina RNA-seq was performed on RNA from pereferial blood mononuclear cells taken from 12 healthy individuals, 5 untreated RA patients, and 7 treated RA patients

Publication Title

Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP071898
Allele specific deletion of enhancer clusters within mouse F1 embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We provide data from several targeted deletions of transcriptional enhancer clusters within mouse F1 embryonic stem (ES) cells. We targeted these regions for deletion with CRISPR/Cas9 genome editing tools. We demonstrate through heterozygous enhancer cluster deletion and allele specific RNA-seq that enhancer clusters differ in their regulatory activity as the magnitude of the observed change in transcription upon enhancer cluster deletion varies greatly. Overall design: Strand specific RNA-seq after heterozygous or homozygous enhancer cluster deletion in mouse F1 ES cells (M. musculus129 x M. castaneus)

Publication Title

Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP161949
Profiling of gene expression using RNA-Seq in fibroblasts, iPSCs, iPSC-derived neurons and cells overexpressing Onecut transcription factors
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Remodeling of chromatin accessibility is necessary for successful reprogramming of fibroblasts to neurons. However, it is still not fully known which transcription factors can induce a neuronal chromatin accessibility profile when overexpressed in fibroblasts. To identify such transcription factors, we here used ATAC-sequencing to generate differential chromatin accessibility profiles between human fibroblasts and iNeurons, an in vitro neuronal model system obtained by overexpression of Neurog2 in induced pluripotent stem cells (iPSCs). We found that the ONECUT transcription factor sequence motif was strongly associated with differential chromatin accessibility between iNeurons and fibroblasts. All three ONECUT transcription factors associated with this motif (ONECUT1, ONECUT2 and ONECUT3) induced neuronal morphology and expression of neuronal genes within two days of overexpression in fibroblasts. We observed widespread remodeling of chromatin accessibility; in particular, we found that chromatin regions that contain the ONECUT motif were in- or lowly accessible in fibroblasts and became accessible after the overexpression of ONECUT1, ONECUT2 or ONECUT3. There was substantial overlap with iNeurons, still, many regions that gained accessibility following ONECUT overexpression were not accessible in iNeurons. Our study highlights the potential of ONECUT transcription factors for direct neuronal reprogramming. Overall design: Each RNA-Seq experiment was performed in duplicate (library constructed from different wells of the same cell line in the same cell culture experiment). Bclxl controls were generated for the overexpression. experiments.

Publication Title

ONECUT transcription factors induce neuronal characteristics and remodel chromatin accessibility.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE89962
mouse BMDM dual PAMP stimulation with poly(I:C), R848, LPS, Pam3CSK3
  • organism-icon Mus musculus
  • sample-icon 69 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Gene expression kinetics for BM-DM from C57BL/6 mouse stimulated with four different TLR ligands poly(I:C), R848, LPS, Pam3CSK4 either singly or in paired combination, for 1 hour, 4 hour, or 8 hour.

Publication Title

Systematic Investigation of Multi-TLR Sensing Identifies Regulators of Sustained Gene Activation in Macrophages.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE89988
Systematic investigation of multi-TLR sensing identifies novel regulators of sustained gene activation in macrophages.
  • organism-icon Mus musculus
  • sample-icon 66 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systematic Investigation of Multi-TLR Sensing Identifies Regulators of Sustained Gene Activation in Macrophages.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE89987
mouse BMDM poly(I:C), R848, or poly(I:C)+R848 stimulation
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Gene expression kinetics for BM-DM from C57BL/6 mice challenged by poly(I:C) , R848, poly(I:C)+R848 examined at 6 time points including 0.5, 1, 2, 4, 8, 12 h.

Publication Title

Systematic Investigation of Multi-TLR Sensing Identifies Regulators of Sustained Gene Activation in Macrophages.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE29246
RAP1A signaling in Leishmania donovani infected macrophages
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Monastrol treatment of Leishmania donovani infected macrophages

Publication Title

A member of the Ras oncogene family, RAP1A, mediates antileishmanial activity of monastrol.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE26471
HeLa gene expression profile
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression in HeLa cells was profiled using Affymetrix gene expression Human HG-U133_Plus_2 array. Transcript signal was mapped against the chromosome coordinates (probe-by-probe basis) using the HG-U133A_2 Annotations CSV file for hg18 build of the human genome provided by Affymetrix.

Publication Title

Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact