refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 13 results
Sort by

Filters

Technology

Platform

accession-icon GSE48761
Expression profiling of skin fibroblast and iPSC from Werner Syndrome
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The premature aging disorder Werner Syndrome (WS) is characterized by early onset of aging phenotypes resembling natural aging. In most WS patients there are mutations in the DNA helicase WRN, an enzyme important in maintaining genome stability and telomere replication. Interestingly, its clinical manifestations reflect a severe degree of deterioration for connective tissue, whereas the central nervous system is less affected. We suggest that the varied vulnerability to aging is regulated by an unknown mechanism that protects specific lineages of stem cells from premature senescence. To address this problem, we reprogrammed patient skin fibroblasts to induced pluripotent stem cells (iPSC). The expression profile for the differentiated normal and WS fibroblasts and undifferentiated iPSC were compared. A distinct expression profile was found between normal and WS fibroblasts, however, few changes of gene expression were found in iPSC. Our findings suggest an erasure of aging phenotype associated with WS in reprogrammed iPSC.

Publication Title

Telomerase protects werner syndrome lineage-specific stem cells from premature aging.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE23680
Expression data from hepatocellular carcinoma and adjacent normal liver tissue
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Assay of gene expression pattern differences between liver cancer tissue and normal liver tissue from the same mouse by microarray in 4 separate mice injected with recombinant adeno-associated viral (AAV) vector

Publication Title

Assessing the potential for AAV vector genotoxicity in a murine model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE68790
caArray_EXP-578: Gene Expression Profiles of Pediatric B-Precursor High-Risk Acute Lymphoblastic Leukemia (COG Study AALL0232 - Cohort 1).
  • organism-icon Homo sapiens
  • sample-icon 274 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This experiment comprises 283 CEL files generated on the Affymetrix U133 Plus 2.0 gene expression microarray platform, using patient peripheral blood and bone marrow samples from the first cohort of patients accrued to Children's Oncology Group Study AALL0232. No clinical covariate data is provided at this time as the clinical study is not yet published. Researchers who would like to request outcome or other covariate data are asked to contact Dr. Cheryl Willman, cwillman@unm.edu, 505.272.5622 (University of New Mexico) and Dr. Steven Hunger, Stephen.Hunger@childrenscolorado.org (Children's Oncology Group and Children's Hospital Colorado) to arrange a collaboration.

Publication Title

Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE57317
Gene expression profiles of patients with multiple myeloma who have been treated previously
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This Series represents the gene expression profiles of patients with multiple myeloma who have been treated previously. In brief, Total Therapy 6 (TT6) is an open label phase 2 protocol for patients with symptomatic multiple myeloma, who had been treated with more than one cycle of prior therapy excluding autologous hematopoietic stem cell transplant. This protocol was approved by the institutional review board on March 25, 2009 (IRB#108053). The TT6 treatment regimen consists of induction therapy with Melphalan/Bortezomib/Thalidomide/Dexamethasone/Cisplatin/Doxorubicin/Cyclophosphamide/Etoposide (M-VTD-PACE) followed by a high dose M-VTD-PACE based tandem transplant. Maintenance therapy consists of Bortezomib/Lenalidomide/Dexamethasone alternating with Borteomib/Melphalan/Dexamethasone every months for 3 years.

Publication Title

Five gene probes carry most of the discriminatory power of the 70-gene risk model in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE26697
Transcriptomic response of murine liver to severe injury and hemorrhagic shock
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26695
Transcriptomic response of murine liver to severe injury and hemorrhagic shock: Affymetrix portion of dual platform
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock

Publication Title

Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE56483
Modeling the clinical phenotype of BTK inhibition in the mature murine immune system
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Using the novel BTK inhibitor PF-303, we model the clinical phenotype of BTK inhibition by systematically examining the impact of PF-303 on the mature immune system in mice autoimmune indications. However, our current knowledge of the role of BTK in immune competence has been gathered in the context of genetic inactivation of btk in both mice and man. Using the novel BTK inhibitor PF-303, we model the clinical phenotype of BTK inhibition by systematically examining the impact of PF-303 on the mature immune system in mice. We implicate BTK in tonic BCR signaling, demonstrate dependence of the T3 B cell subset and IgM surface expression on BTK activity, and find that B1 cells survive and function independently of BTK. While BTK inhibition does not impact humoral memory survival, antigen-driven clonal expansion of memory B cells and antibody secreting cell generation are inhibited. These data define the role of BTK in the mature immune system and mechanistically predict the clinical phenotype of BTK inhibition.

Publication Title

Modeling the clinical phenotype of BTK inhibition in the mature murine immune system.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64034
Transcriptome comparison between CHOPS syndrome and Cornelia de Lange syndrome
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

CHOPS syndrome is caused by germline gain-of-function mutations of AFF4. Cornelia de Lange syndrome is caused by germline mutations of cohesin loading factors or cohesin complex genes such as NIPBL, SMC1A, SMC3 and HDAC8. There are many overlapping clinical features exist between CHOPS syndrome and Cornelia de Lange syndrome. To identified commonly dysregulated genes in CHOPS syndrome and Cornelia de Lange syndrome, we perfomred side-by-side transcriptome comparison between CHOPS syndrome and Cornelia de Lange syndrome.

Publication Title

Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE64031
Transcriptome characterization of CHOPS syndrome, a novel genetic disorder caused by gain-of-function mutations of AFF4
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

AFF4 is a component of super elongation complex (SEC), which plays an important role in mobilizing paused RNA polymerase II at gene promoter regions. Using exome sequenging, we have identified a novel genetic disorder caused by missense mutations in AFF4. We propose CHOPS syndrome as a name for this new diagnosis. To evaluate the effect of identified missense mutations of AFF4, utilizing patient derived skin fibroblast cell lines, the gene expression analysis was perfomred.

Publication Title

Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE85171
Epigenetic Reprogramming of mutant RAS-driven Rhabdomyosarcoma via MEK Inhibition
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma.

Sample Metadata Fields

Treatment, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact