refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 85 results
Sort by

Filters

Technology

Platform

accession-icon GSE15582
Over expression of mRNA for multiple genes including insulin in the PLN of NOD is associated with Islet Autoimmunity
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The aim of this study is to identify genes implicated in the early steps of the autoimmune process, prior to inflammation in type 1 diabetes. Early Insulin AutoAntibodies (E-IAA) have been used as subphenotypic marker to select individual animals as type 1 diabetes prone and to compare gene expression patterns with insulin autoantibody negative NOD.

Publication Title

Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity.

Sample Metadata Fields

Age

View Samples
accession-icon GSE26410
Inflammation leads to loss of smooth muscle cells but fails to induce invasiveness in a prostate tumor model
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Inflammation has a causal role in many cancers. In prostate cancers, epidemiological data suggest a link between prostatitis and subsequent cancer development, but a proof for this concept in a tumor model has been lacking. A constitutively active version of the IkappaB kinase 2 (IKK2), the molecule activated by a plethora of inflammatory stimuli, was expressed specifically in the prostate epithelium. Signaling of the IKK2/NF-kappaB axis was insufficient for transformation of prostate tissue. However, while PTEN+/- epithelia exhibited intraepithelial neoplasias only recognizable by nuclear alterations, additional IKK2 activation led to an increase in tumor size and formation of cribriform structures and to a fiber increase in the fibroblastic stroma. This phenotype was coupled with inflammation in the prostate gland characterized by infiltration of granulocytes and macrophages. Molecular characterization of the tissues showed a specific loss of smooth muscle markers as well as expression of chemokines attracting immune cells. Isolation of epithelial and stromal cells showed differential chemokine expression by these cells. Correlation studies showed the inflammatory phenotype coupled to loss of smooth muscle in infiltrated glands, but maintenance of the phenotype in glands where inflammation had decreased. Despite the loss of the smooth muscle barrier, tumors were not invasive in a stable genetic background. Data mining revealed that smooth muscle markers are downregulated in human prostate cancers and literature data show that loss of these markers in primary tumors is associated with subsequent metastasis. Our data show that loss of smooth muscle and invasiveness of the tumor are not coupled. Thus, inflammation during early steps of tumorigenesis can lead to increased tumor size and a potential change in the subsequent metastatic potential, but the tumor requires an additional transformation to become a carcinoma.

Publication Title

Persistent inflammation leads to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP059880
RNA-seq of cytosolic and chromatin-associated transcripts following TNFa and Spt5 KD
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We examined the effects of TNFa and Spt5, the major DSIF subunit, on nascent and mature transcripts using RNA-Seq of chromatin-associated and cytoplasmic transcripts. Overall design: RNA was extracted from the cytosolic and chromatin fractions of control and Spt5 KD cells that were treated with TNFa for 1 hour

Publication Title

Analysis of Subcellular RNA Fractions Revealed a Transcription-Independent Effect of Tumor Necrosis Factor Alpha on Splicing, Mediated by Spt5.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36009
Gene expression data from Wild Type and Nlrp10 deficient dendritic cells treated with or without LPS
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Nlrp10-deficient mice have a profound defect in helper T cell-driven immune responses. T cell priming is impaired due to a defect in the emigration of a dendritic cells from inflamed tissue and antigen transport to draining lymph nodes. DC chemotaxis to CCR7-dependent and independent ligands is intact in the absence of Nlrp10.

Publication Title

NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE12648
Hereditary Inclusion Body Myopathy (HIBM)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

HIBM is a neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness. Here, gene expression was measured in muscle specimens from 10 HIBM patients carrying the M712T Persian Jewish founder mutation in GNE and presenting with mild histological changes, and from 10 healthy matched control individuals.

Publication Title

Mitochondrial processes are impaired in hereditary inclusion body myopathy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13196
Expression data from zebrafish pineal gland
  • organism-icon Danio rerio
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Microarray data allowed detection of genes that are highly expressed in the pineal gland.

Publication Title

A new cis-acting regulatory element driving gene expression in the zebrafish pineal gland.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE53288
Effect of light on gene expression in the zebrafish pineal gland
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Microarray data allowed detection of genes that are induced by light in the zebrafish pineal gland

Publication Title

The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE15090
Gene expression profiles in muscle tissue from FSHD patients
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Muscle biopsies from biceps and deltoid were taken from 5 patients with FSHD, 5 asymptomatic carriers and 5 normal controls. The genome-wide expression patterns were compared using Affymetrix U133 Plus 2.0 chips.

Publication Title

Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon SRP193559
Inactivation of CFTR by CRISPR/Cas9 alters transcriptional regulation of inflammatory pathways and other networks
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, NextSeq 550

Description

Individuals with cystic fibrosis (CF) experience elevated inflammation in multiple organs, but whether this reflects an inherent feature of CF cells or is a consequence of a pro-inflammatory environment is not clear. Using CRISPR/Cas9-mediated mutagenesis of CFTR, 17 subclonal cell lines were generated from Caco-2 cells. Clonal lines with functional CFTR (CFTR+) were compared to those without (CFTR-) to directly address the role of CFTR in inflammatory gene regulation. All lines maintained CFTR mRNA production and formation of tight junctions. CFTR+ lines displayed short circuit currents in response to forskolin, while the CFTR- lines did not. Baseline expression of both cytokines was not different between the lines regardless of CFTR genotype. All lines responded to TNFa and IL1b by increasing IL6 and CXCL8 (IL8) mRNA levels, but the CFTR- lines produced more CXCL8 mRNA than the CFTR+ lines. Transcriptomes of 6 CFTR- and 6 CFTR+ lines, before and after stimulation by TNFa, were compared for differential expression as a function of CFTR genotype. While some genes appeared to be differentially expressed simply because of CFTR's absence, others required stimulation for differences to be apparent. Together, these data suggest cells respond to CFTR's absence by modulating transcriptional networks, some of which are only apparent when cells are exposed to different environmental contexts, such as inflammation. With regards to inflammation, these data suggest a model in which CFTR's absence leads to a poised, pro-inflammatory state of cells that is only revealed by stimulation. Overall design: Compare cells with intact CFTR to cells lacking CFTR for overall gene expression under basal and TNFa-stimulated conditions

Publication Title

Inactivation of CFTR by CRISPR/Cas9 alters transcriptional regulation of inflammatory pathways and other networks.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE115660
RNA microarray studies of aspirin's effect on MnSOD-deficient mutant [EG110, (MT)] and wild-type [EG103, (WT)] Saccharomyces cerevisiae yeast cells
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Non-steroidal anti-inflammatory drugs, principally aspirin (acetylsalicylic acid, ASA), have anti-neoplastic properties, as shown by epidemiological studies on colorectal cancer and many other types of tumours. The chemopreventive and anti-proliferative properties of aspirin towards tumour cells have been shown to be due to the induction of programmed cell death such as apoptosis. Yeast cells are among the experimental models used extensively for the study of oxidative stress and apoptosis in living organisms because yeast, such as S. cerevisiae, retains many of the core eukaryotic cellular processes, including the hallmarks of eukaryotic apoptosis. An important contribution of our previous work has been the clarification of the critical defensive role of the antioxidant mitochondrial enzyme manganese superoxide dismutase (MnSOD) against apoptosis, confirmed to be the attenuation of aspirin-induced superoxide radical accumulation in the yeast mitochondria (Farrugia et al. (2013) FEMS Yeast Res 13, 755-768). To study the possible differential expression of gene transcripts in relation to the induction of apoptosis by aspirin, we used gene expression profiling by means of GeneChip Microarray Technology (Affymetrix). The yeast strains considered for this study included (1) the wild type strain S. cerevisiae EG103, which contains both MnSOD and cytosolic copper, zinc superoxide dismutase (CuZnSOD) and (2) the redox-compromised MnSOD-deficient S. cerevisiae EG110 strain. [This work was financed by the Malta Council for Science and Technology through the R&I Technology Development Programme (Project R&I-2015-001)].

Publication Title

Aspirin impairs acetyl-coenzyme A metabolism in redox-compromised yeast cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact