refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 42 results
Sort by

Filters

Technology

Platform

accession-icon GSE147090
Effects of SPOP mutation in DU145 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We aimed at analyzing the transcriptome changes associated with SPOP mutation in DU145 cells

Publication Title

SPOP Deregulation Improves the Radiation Response of Prostate Cancer Models by Impairing DNA Damage Repair.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE34390
dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing.
  • organism-icon Drosophila melanogaster
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Transcription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was uncovered through the identification of dRING-associated factors (dRAF), a novel Polycomb group (PcG) silencing complex harboring the histone H2A ubiquitin ligase dRING, PSC and the F-box protein, and demethylase dKDM2. In vivo, dKDM2 shares many transcriptional targets with Polycomb and counteracts the histone methyltransferases TRX and ASH1. Importantly, cellular depletion and in vitro reconstitution assays revealed that dKDM2 not only mediates H3K36me2 demethylation but is also required for efficient H2A ubiquitylation by dRING/PSC. Thus, dRAF removes an active mark from histone H3 and adds a repressive one to H2A. These findings reveal coordinate trans-histone regulation by a PcG complex to mediate gene repression.

Publication Title

dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP131002
Necroptosis inhibition protects from dopaminergic neuronal cell death in OPA1 mutant Parkinson's disease patient neurons and MPTP treated mice
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

Dysfunctions in mitochondria dynamics and metabolism are common pathological processes associated with Parkinson's disease (PD). Recently, it was shown that an inherited form of PD and dementia is caused by new mutations in the OPA1 gene, which encodes for a key player of mitochondrial fusion and structure. iPSC-derived neural cells from these patients exhibited severe mitochondrial fragmentation, respiration impairment, ATP deficits and heightened oxidative stress. Reconstitution of normal levels of OPA1 in PD-derived neural cells normalized mitochondria morphology and function. OPA1 mutated neuronal cultures showed reduced survival in vitro. Intriguingly, selective inhibition of necroptosis effectively rescued this survival deficit. Additionally, dampening necroptosis in MPTP treated mice protected from DA neuronal cell loss. This human iPSC-based model captures both the early pathological events in OPA1 mutant neural cells and the beneficial effects of blocking necroptosis, highlighting this cell death process as a promising therapeutic target for PD. Overall design: 3 replicates for control and 3 replicates for OPA1 F38D mutant cells

Publication Title

Pharmacological Inhibition of Necroptosis Protects from Dopaminergic Neuronal Cell Death in Parkinson's Disease Models.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon E-MEXP-879
Transcription profiling of Drosophila embryos at stages 11 and 12 to identify genes downstream of Hox
  • organism-icon Drosophila melanogaster
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Identification of Hox gene downstream genes at embryonic stages 11 and 12<br></br><br></br>Functional diversification of body parts is dependent on the formation of specialized structures along the various body axes. In animals, region-specific morphogenesis along the anterior-posterior axis is controlled by a group of conserved transcription factors encoded by the Hox genes. Although it has long been assumed that Hox proteins carry out their function by regulating distinct sets of downstream genes, only a small number of such genes have been found, with very few having direct roles in controlling cellular behavior. We have quantitatively identified hundreds of Hox downstream genes in Drosophila by microarray analysis, and validated many of them by in situ hybridizations on loss- and gain-of-function mutants. One important finding is that Hox proteins, despite their similar DNA binding properties in vitro, have highly specific effects on the transcriptome in vivo, as expression of many downstream genes responds primarily to a single Hox protein. In addition, a large fraction of downstream genes encodes realizator functions, which directly affect morphogenetic processes, such as orientation and rate of cell divisions, cell-cell adhesion and communication, cell shape and migration, or cell death. Focusing on these realizators, we provide a framework for the morphogenesis of the maxillary segment. Since the genomic organization of Hox genes and the interaction of Hox proteins with specific cofactors are conserved in vertebrates and invertebrates, and similar classes of downstream genes are regulated by Hox proteins across the metazoan phylogeny, our findings represent a first step towards a mechanistic understanding of morphological diversification within a species as well as between species.

Publication Title

Comparative analysis of Hox downstream genes in Drosophila.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE42618
pp71-stimulated genes in U87 stable cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Glioblastoma multiforme (GBM) is a highly malignant primary central nervous neoplasm characterized by tumor cell invasion, robust angiogenesis, and a mean survival of 15 months. Human cytomegalovirus (HCMV) infection is present in > 90% of GBMs, although the role the virus plays in GBM pathogenesis is unclear. We report here that a majority of human GBM tumors express HCMV pp71, which has previously been found to promote cell cycle progression and viral replication, and that pp71 is expressed preferentially within the CD133+ cancer stem cell-like subpopulation. Overexpression of pp71 in adult neural precursor cells (NPCs) resulted in a dramatic induction of stem cell factor (SCF) gene expression, which has been identified as an important pro-angiogenic factor in GBM.

Publication Title

Cytomegalovirus pp71 protein is expressed in human glioblastoma and promotes pro-angiogenic signaling by activation of stem cell factor.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP077961
Myocardin-related Transcription Factors Are Required for Skeletal Muscle Development
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Myocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional coactivators in skeletal myopathies. Overall design: Gene expression profile was generated comparing wild type (WT) and HSA-Cre, MRTF-A/B double knockout mice, by deep seqencing, with three biological replicates, using Illumina HiSeq 2500.

Publication Title

Myocardin-related transcription factors are required for skeletal muscle development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE46995
Molecular signature with high accuracy for biliary atresia identifies a role for Interleukin-8 in pathogenesis of disease
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE46960
Comprehensive gene expression profile of human livers from patients with biliary atresia at the time of diagnosis and the corresponding disease and normal controls
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Liver biopsy samples were obtained from 64 infants with biliary atresia at the time of intraoperative cholangiogram. Liver biopsy samples were obtained from 14 age-matched infants with other causes of intrahepatic cholestasis, and from 7 deceased-donor children. GeneChip Human Gene 1.0 ST Array (Affymetrix, CA) were used to screen mRNAs whose expression was specifically regulated in the livers from patients with biliary atresia.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45285
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46967
Comprehensive gene expression profile of extrahepatic bile ducts in mice with experimental biliary atresia
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Newborn Balb/c mice were injected intraperitoneally with 1.5x10^6 fluorescent-forming units (ffu) of type- A Rhesus Rotavirus (RRV) or 0.9% normal saline (NS; control) within 24 hours of birth to induce experimental model of biliary atresia. Extrahepatic bile ducts including gallbladder were microdissected en bloc at 3, 7 and 14 days after RRV or saline injections. GeneChip Mouse Gene 1.0 ST Array (Affymetrix, CA) were used to screen mRNAs whose expression was differently regulated after RRV challenge compared to normal saline controls.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact