refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE72062
Whole genome microarray gene expression profiling of hippocampal genes from aged rats subjected to chronic unpredictable mild stress
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Psychological, psychosocial and physical stress are major risk factors, which enhance the development of sporadic late-onset Alzheimer`s disease. The chronic unpredictable mild stress model mimics those risk factors and triggers signs of neurodegeneration and neuropathological features of sporadic AD such as tau hyperphosphorylation and enhanced amyloid beta generation. The study investigated the impact of chronic unpredictable mild stress on signs of neurodegeneration by analyzing hippocampal gene expression with whole genome microarray gene expression profiling.

Publication Title

Inhibition of ACE Retards Tau Hyperphosphorylation and Signs of Neuronal Degeneration in Aged Rats Subjected to Chronic Mild Stress.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP127964
Transcriptome analysis of VMRC-LCD cells following ASCL1 knockdown
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

ASCL1 is a master transcription factor for neuroendocrine differentiation. RNA-sequencing analysis on VMRC-LCD cells following ASCL1 knockdown revealed a subset of genes possibly regulated by ASCL1. Overall design: VMRC-LCD cells were transfected with siRNAs for ASCL1, and RNA-sequencing was performed using Illumina HiSeq.

Publication Title

An Integrative Analysis of Transcriptome and Epigenome Features of ASCL1-Positive Lung Adenocarcinomas.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP066021
Physical interaction between mutant calreticulin and the thrombopoietin receptor is required for transformation of hematopoietic cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN). However, the mechanism by which mutant CALR is oncogenic is unknown. Here, we demonstrate that a megakaryocytic-specific MPN phenotype is induced when mutant CALR is over-expressed in mice and that the thrombopoietin receptor, MPL is required for mutant CALR driven transformation. Whole transcriptome analysis reveals enrichment of STAT signatures in mutant CALR transformed cells and JAK2 inhibitor treatment abrogates STAT activation. Employing extensive mutagenesis-based structure-function analysis we demonstrate that the positively charged amino acids within the mutant CALR C-terminus are required for cellular transformation through facilitating physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel mechanism of cancer pathogenesis. Overall design: Transcriptomes derived from BA/F3-MPL cells transformed with human wild-type CALR, human mutant CALR 52bp del, or Empty vector, at time zero (t0) and 24 hours (t24) after IL3-withdrawal culture were generated by deep sequencing, two replicas, by HiSeq2000.

Publication Title

Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE72219
The human glioblastoma cell culture resource
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE72218
Expression data from The human glioblastoma cell culture resource: validated cell models representing all molecular subtypes (transcript)
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

To explore the degree to which the glioma cell lines remained transcriptionally stable under diverse experimental conditions, we transplanted three different lines (U3020MG, U3047MG and U3065MG) intracranially to NOD-SCID mice; explanted the resulting tumors and cultured the cells for two passages, and then isolated RNA from the cell line prior to transplantation (U3020MG-p10, U3047MG-p7, U3065MG-p10), from the xenograft tumor and from the explanted cells.

Publication Title

The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes.

Sample Metadata Fields

Disease

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact