refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE37448
Immunological Genome Project data Phase 2
  • organism-icon Mus musculus
  • sample-icon 181 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene-expression microarray datasets generated as part of the Immunological Genome Project (ImmGen) for samples that use a different set of amplification reagents (Ambion WT Expression Kit, not the Affymetrix GeneChip WT cDNA Synthesis and Amplification Kits).

Publication Title

The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE32425
Expression profile of zebrafish embryonal rhabdomyosarcoma
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Fluorescent-labeled zebrafish RAS-induced embryonal rhabdomyosarcoma (ERMS) were created to facilitate in vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in diverse cellular compartments. Using this strategy, we have identified a molecularly distinct ERMS cell subpopulation that expresses high levels of myf5 and is enriched for ERMS-propagating potential when compared with other tumor-derived cells.

Publication Title

In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE60990
Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Activating mutations of G protein alpha subunits (Ga) occur in 4-5% of all human cancers1 but oncogenic alterations in beta subunits (Gb) have not been defined. Here we demonstrate that recurrent mutations in the Gb proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Ga subunits as well as downstream effectors, and disrupt Ga-Gbg interactions. Different mutations in Gb proteins clustered to some extent based on lineage; for example, all eleven GNB1 K57 mutations were in myeloid neoplasms while 6 of 7 GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 alleles in Cdkn2a-deficient bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 mutations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.

Publication Title

Mutations in G protein β subunits promote transformation and kinase inhibitor resistance.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE25828
Pten deficiency cooperates with KrasG12D to activate NFkB pathway promoting the development of malignant pancreatic ductal adenocarcinoma
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Almost all human pancreatic ductal adenocarcinomas (PDACs) are driven by oncogenic Kras and the progression of the disease is characterized by the serial appearance of certain genetic lesions. Mouse models have convincingly shown that Kras mutation induces classical PanIN lesions that can progress to PDAC in the appropriate tumor suppressor background. However, the cooperative mechanism between mutant Kras-dependent signaling surrogates and other oncogenic pathways remains to be fully elucidated in order to devise better therapeutic strategy. Mounting evidence PTEN/PI3K perturbation on PDAC tumorigenesis, we observed frequent PTEN inactivation at both genomic and histopathological levels in primary human PDAC samples. The importance of PTEN/PI3K pathway during the development of PDAC was further supported by genetic studies demonstrating that Pten deficiency in cooperation with Kras activation accelerated the formation of invasive PDAC. Mechanistically, combined Kras mutation and Pten inactivation leads to NFkB activation and subsequent induction of cytokine pathways, accompanied with strong stromal activation and immune cell infiltration. Therefore, PTEN/PI3K pathway dictates the activity of NFkB network and serves as a major surrogate during Kras-mediated pancreatic tumorigenesis.

Publication Title

PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-κB-cytokine network.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact