refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 39 results
Sort by

Filters

Technology

Platform

accession-icon GSE16732
Affymetrix Gene Chip Human Exon 1.0 ST Array expression profiling of 41 human breast cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Gene expression analysis under normal culture conditions (RPMI-10%FBS) and at optimal cell densities.

Publication Title

Low-risk susceptibility alleles in 40 human breast cancer cell lines.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE52813
Gene expression signature of fast and slow cycling intestinal crypt base columnar cell populations
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The identification of Lgr5 as an intestinal stem cell marker has made it possible to isolate and study primary stem cells from small intestine. Using the cell cycle specific expression og the mKi67 gene, we generated a novel Ki67-RFP knock-in allele which identifies dividing cells. Using Lgr5-GFP;Ki67-RFP mice, we isolated CBCs with distinct Wnt signaling levels and cell cycle features, and analyzed their global gene expression pattern using microarrays. We concluded that the cycling Lgr5hi stem cells exit the cell cycle in transition into the secretory lineage. Lgr5med Ki67low intermediate precursors reside in the zone of differentiation, resemble quiescent stem cells and generate the Dll1+ secretory precursors and the label retaining cells. Our findings support the cycling stem cell hypothesis and highlight the heterogeneity of early progenitors during lineage commitment.

Publication Title

Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22056
High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia.
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

High VEGFC mRNA expression of AML blasts is related to increased in vitro and in vivo drug resistance. The prognostic significance of VEGFC on long-term outcome and its associated gene expression profiles remain to be defined. We studied the effect of VEGFC on treatment outcome and investigated gene expression profiles associated with VEGFC using microarray data of 525 adult and 100 pediatric AML patients. High VEGFC expression appeared strongly associated with reduced complete remission rate, reduced overall and event-free survival (OS and EFS) in adult AML. Multivariable analysis established high VEGFC as prognostic indicator independent of cytogenetic risk, FLT3-ITD, NPM1, CEBPA, age and WBC. Also in pediatric AML high VEGFC was related to reduced OS. A unique series of differentially expressed genes was identified that distinguished AML with high VEGFC from AML with low VEGFC, i.e., 331 upregulated genes (representative of proliferation, VEGF-receptor activity, signal transduction) and 44 downregulated genes (e.g. related to apoptosis) consistent with a role in enhanced chemoresistance. In conclusion, high VEGFC predicts adverse long-term prognosis and provides prognostic information in addition to well-known prognostic factors.

Publication Title

High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP064574
Genetic code expansion in stable cell lines enables encoded chromatin modification
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Genetically encoded unnatural amino acids provide powerful strategies for modulating the molecular functions of proteins in mammalian cells. However this approach has not been coupled to genome-wide measurements, because efficient unnatural amino acid incorporation is limited to readily transfectable cells and leads to very heterogeneous expression. We demonstrate that rapid piggybac integration of the orthogonal pyrrolysyl-tRNA synthetase (PylS)/tRNAPyl CUA pair (and its derivatives) into the mammalian genome enables efficient, homogeneous unnatural amino acid incorporation into target proteins in diverse cells, and we reveal the distinct transcriptional responses of ES cells and MEFs to amber suppression. Genetically encoding Ne-acetyl-lysine in place of six lysine residues in histone H3, that are known to be post-translationally acetylated, enables deposition of pre-acetylated histones into cellular chromatin, via a synthetic pathway that is orthogonal to enzymatic modification, allowing us to determine the consequences of acetylation at specific amino acids in histones on gene expression. Overall design: mRNA was sequenced using polyA-enrichment and Truseq library preparation protocol. Two biological replicates were sequences for each cell line and condition

Publication Title

Genetic code expansion in stable cell lines enables encoded chromatin modification.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE47517
Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Thyroid hormone has a positive effect on endochondral bone growth. Few studies have looked at the interaction between thyroid hormone exposures and intramembranous bone derived cells. We used microarray as one tool to determine the gene expression profile of intramembranous (calvarial) derived murine pre-osteoblsts after thyroxine exposure.

Publication Title

Effects of thyroxine exposure on osteogenesis in mouse calvarial pre-osteoblasts.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP114373
Profiling proliferative cells and their progeny in damaged murine hearts
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The significance of cardiac stem cell (CSC) populations for cardiac regeneration remains disputed. Here, we apply the most direct definition of stem cell function (the ability to replace lost tissue through cell division) to interrogate the existence of CSCs. By single-cell mRNA sequencing and genetic lineage tracing using two Ki67 knockin mouse models, we map all proliferating cells and their progeny in homoeostatic and regenerating murine hearts. Cycling cardiomyocytes were only robustly observed in the early postnatal growth phase, while cycling cells in homoeostatic and damaged adult myocardium represented various noncardiomyocyte cell types. Proliferative postdamage fibroblasts expressing follistatin-like protein 1 (FSTL1) closely resemble neonatal cardiac fibroblasts and form the fibrotic scar. Genetic deletion of Fstl1 in cardiac fibroblasts results in postdamage cardiac rupture. We find no evidence for the existence of a quiescent CSC population, for transdifferentiation of other cell types toward cardiomyocytes, or for proliferation of significant numbers of cardiomyocytes in response to cardiac injury. Overall design: We generated transciptome data from proliferative cardiac cells collected from 3, 7 or 14 days following myocardial infarction (MI) or sham surgery. This series includes single-cell transcriptome data from (Ki67-RFP+) cardiac cells collected from neonatal murine hearts, adult homeostatic murine hearts or adult murine hearts collected 14 days following myocardial infarction (MI), ischemic/perfusion (I/R) or sham surgery.

Publication Title

Profiling proliferative cells and their progeny in damaged murine hearts.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP044086
Histone H3.3 is required for endogenous retroviral element silencing and genome stability [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Endogenous retroviruses (ERVs) have provided an evolutionary advantage in the diversification of transcript regulation and are thought to be involved in the establishment of extraembryonic tissues during development. However, silencing of these elements remains critical for the maintenance of genome stability. Here, we define a new chromatin state that is uniquely characterized by the combination of the histone variant H3.3 and H3K9me3, two chromatin ‘marks’ that have previously been considered to belong to fundamentally opposing chromatin states. H3.3/H3K9me3 heterochromatin is fundamentally distinct from ‘canonical’ H3K9me3 heterochromatin that has been under study for decades and this unique functional interplay of a histone variant and a repressive histone mark is crucial for silencing ERVs in ESCs. Our study solidifies the emerging notion that H3.3 is not a histone variant associated exclusively with “active” chromatin and further suggests that its incorporation at unique heterochromatic regions may be central to its function during development and the maintenance of genome stability. Overall design: RNA-seq analysis of three embryonic stem cell lines WT, H3.3 KO1, and H3.3 KO2)

Publication Title

Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP159004
Expression changes in mouse oligodendrocytes after deletion of the Ep400 chromatin remodeler
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To address the role of INO80/SWR-type remodeling complexes, we deleted Ep400 at defined times of mouse oligodendrocyte development. Whereas oligodendrocyte precursors are specified and develop normally without Ep400, terminal differentiation is dramatically impaired resulting in hypomyelination. RNA-Seq studies were performed on cultured and FACS sorted control and Ep400-deficient mouse oligodendrocytes to analyze changes in gene expression. These revealed that genes associated with the myelination program and with response to DNA damage are altered in Ep400-deficient oligodendrocytes. Overall design: OPC mRNA profiles of 6-day old control (ctrl) and Ep400 cko mice were generated using the Illumina HiSeq 2500 platform.

Publication Title

Chromatin remodeler Ep400 ensures oligodendrocyte survival and is required for myelination in the vertebrate central nervous system.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE14026
Gene expression comparisons of T helper cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This is to compare the gene expression profile of Th1 and Th17 cells.

Publication Title

Late developmental plasticity in the T helper 17 lineage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43387
The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a protomap in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The intermediate map in SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 Eomes Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism.

Publication Title

The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact