refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE18338
Genome wide screening of human growth plates during early and progressed stage puberty in one patient
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In progressed puberty, estrogen is responsible for the deceleration of growth by stimulating growth plate maturation. The mechanism of action is largely unknown. We obtained pubertal growth plate specimens of the same girl at Tanner stage B2 and Tanner stage B3, which allowed us to address this issue in more detail. Histological analysis showed that progression of puberty coincided with characteristic morphological changes associated with growth plate maturation, such as decreases in total growth plate height (p=0.002), height of the individual zones (p<0.001) and a increase in intercolumnar space (p<0.001). Microarray analysis of the specimens identified 394 genes (72% upregulated, 28% downregulated) changing with progression of puberty. Overall changes in gene expression were small (average 1.1 fold change). The 394 genes mapped to 13 significantly changing pathways (p<0.05) in majority belonging to extracellular matrix, cell cycle and cell death, which are all related to growth plate maturation. We next scanned the upstream promoter regions of the 394 genes for the presence of evolutionary conserved binding sites for transcription factors implemented in growth plate maturation such as Estrogen Receptor, Androgen Receptor, Elk1, Stat5b, CREBP and Runx2. Runx2 and Elk1, but not estrogen receptor binding sites were enriched and were present in 87 and 43 out of the 394 genes, respectively.In conclusion, our data suggest a role for Runx2 and Elk1 in growth plate maturation and provides suggestive evidence that the effect of estrogen on growth plate maturation is not mediated by activating genomic estrogen signalling in growth plate chondrocytes.

Publication Title

Genome-wide screening in human growth plates during puberty in one patient suggests a role for RUNX2 in epiphyseal maturation.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE40942
Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFB3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

Publication Title

Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE32398
Expression data from hyaline cartilages
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Comparison of human prepuberal articular and growth plate cartilage

Publication Title

Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55845
Analysis of transcriptomic diversitification of developing cumulus and mural granulosa cells in mouse ovarian follicles
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cumulus cells and mural granulosa cells (MGCs) are spatially and functionally distinct cell types in antral follicles: cumulus cells contact the oocyte and most MGCs contact the basal lamina. For transcriptomic analyses, both cell types were collected from small and large antral follicles, before and after stimulation of immature mice with eCG, respectively. Both cell types underwent dramatic transcriptomic changes and the differences between them became greater with follicular growth. Although cumulus cells of both stages of follicular development are competent to undergo expansion in vitro, they were otherwise remarkably dissimilar with transcriptomic changes quantitatively equivalent to those of MGCs. Gene Ontology (GO) analysis showed that cumulus cells of small follicles were enriched in transcripts generally associated with catalytic components of metabolic processes while those from large follicles were involved in regulation of metabolism, cell differentiation, and adhesion. Upon contrasting cumulus cells versus MGCs, cumulus cells were enriched in transcripts associated with metabolism and cell proliferation while MGCs were enriched for transcripts involved in cell signaling and differentiation.

Publication Title

Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47967
Cooperation of estrogen and oocytes on gene expression in mouse cumulus cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Oocyte-derived paracrine factors and estrogens cooperate to regulate the function and development of mouse cumulus cells.

Publication Title

Cooperative effects of 17β-estradiol and oocyte-derived paracrine factors on the transcriptome of mouse cumulus cells.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE80255
Comparison of transcriptomes of mouse cumulus cells collected from mice before and after 6-h of hCG priming.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We sought to identify genes that are regulated by the ovulatory signals in mouse cumulus cells.

Publication Title

Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE79862
Comparison of transcriptomes between DMSO-5uM and Torin1-5uM treated mouse cumulus-oocyte complexes cultured in vitro for 14h
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

We sought to identify the potential specific roles of the MTOR signalling in cumulus cells by comparing the transcriptomes of the Control (treated with the DMSO vehicle) and MTOR-specific inhibitor Torin 1(5uM)-treated cumulus-oocyte complexes that were cultured for 16 hours.

Publication Title

Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP076260
Epigenomic remodeling of the PAX8 cistrome in high grade serous ovarian cancer [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report mapping of the PAX8 cistrome in three high grade serous ovarian cancer cell lines (KURAMOCHI, OVSAHO, and JHOS4) compared to three benign immortalized fallopian tube cell lines (FT33, FT194, and FT246). We identified a highly conserved PAX8 binding pattern common across benign fallopian tube cell lines that was distinct from the unique PAX8 binding patterns seen in each cancer cell line. Overall design: Comparison of benign and malignant Mullerian cell lines with and without PAX8 knockdown. For each cell line, three distinct siRNAs targeting PAX8 plus a pool of all three siRNAs were examined and compared to both a non-transfected control as well as a control transfected with a non-targeting siRNA.

Publication Title

Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors.

Sample Metadata Fields

Cell line, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact