refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Technology

Platform

accession-icon SRP099453
RNA-sequencing of murine norovirus (MNV) infection and loxoribine (Lox) stimulation in RAW264.7 macrophages
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

This study aimed to generate a comprehensive analysis of changes in the transcriptome following MNV infection. Furthermore, we aimed to perform a differential gene expression analysis between MNV infection and loxoribine (tlr7 agonist) treatment to delineate features of the host modified directly by the MNV as opposed to indirect changes induced through IFN signalling. Overall design: Transcript expression profiles of RAW264.7 cells mock infected, infected with MNV (MOI 5) or treated with loxoribine (1 mM) for 12 hrs were generated using Illumina NextSeq500.

Publication Title

RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP099423
RNA-sequencing of longitudinal murine norovirus (MNV) infection in RAW264.7 mouse macrophages
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The transcriptome has an abundance of information about the function of individual cells, tissues and an organism in general. Characterising the transcriptome of virus infected cells can illuminate features of the viral-host relationship that are important for pathogenesis. This study broadly aimed to quantify the host gene expression changes that occur following MNV infection. Furthermore, we aimed to identify alterations in specific biological pathways by identifying alterations in transcript abundance that increase or decrease in intensity with MNV infection over time. Overall design: Transcript expression profiles of RAW264.7 cells mock infected or infected with MNV for 4, 8, 12, 16 and 20 hours (MOI 5) were generated by RNA-sequencing using Illumina NextSeq500.

Publication Title

RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation.

Sample Metadata Fields

Cell line, Subject, Time

View Samples
accession-icon GSE6980
The Differentiation and Stress Response Factor, XBP-1, Drives Multiple Myeloma Pathogenesis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Multiple myeloma (MM) evolves from highly prevalent premalignant condition termed Monoclonal Gammopathy of Undetermined Significance (MGUS). We report an MGUS-MM phenotype arising in transgenic mice with Emu-directed expression of the unfolded protein/ER stress response and plasma cell development spliced isoform factor XBP-1s. Emu-XBP-1s elicited elevated serum Ig and IL-6 levels, skin alterations and with advancing age, a significant proportion of Emu-xbp-1s transgenic mice develop features diagnostic of human MM including bone lytic lesions. Transcriptional profiles of Emu-xbp-1s B lymphoid and MM cells show aberrant expression of genes known to be dysregulated in human MM including Cyclin D1, MAF, MAFB, and APRIL. This genetic model coupled with documented frequent XBP-1s overexpression in human MM serve to implicate chronic XBP-1s dysregulation in the development of this common and lethal malignancy.

Publication Title

The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE90700
A Long-Range cis-Regulatory Element for Class I Odorant Receptor Genes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Individual olfactory sensory neurons express a single odorant receptor (OR) gene from either class I genes residing in a single cluster on a single chromosome or class II genes spread over multiple clusters on multiple chromosomes.

Publication Title

A long-range cis-regulatory element for class I odorant receptor genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE22598
Clinical significance of UNC5B Expression in Colorectal Cancer
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose and Experimental Design: The purpose of this study is to find a methylation-related gene that could become a biomarker or therapeutic target in colorectal carcinoma (CRC). We screened candidate genes suspected to be silenced by DNA methylation using oligonucleotide microarray analysis. To investigate the clinical significance of one candidate gene (UNC5B), we analyzed the correlation between mRNA expression and clinicopathological features using clinical tissue samples. Finally, methylation specific PCR analysis was performed to reveal whether the promoter region was methylated in CRC cell lines. Results: We found 75 candidate genes that were potentially suppressed by DNA methylation in CRC. We focused on UNC5B, a possible tumor suppressor gene and regulator of apoptosis known to be inactivated in CRC. The mRNA expression analysis using tissue samples revealed that UNC5B mRNA was down-expressed in about 20% of CRC patients, and the patients with low-UNC5B-expression tumors showed a significantly higher recurrence rate after curative surgery. According to the univariate and multivariate analysis, low UNC5B expression was an independent risk factor for postoperative recurrence in stage I, II, and III CRC patients. Furthermore, patients with low expression of UNC5B in tumors had significantly poorer prognosis than those with high expression of UNC5B. Although UNC5B mRNA expression was restored by the demethylation treatment in CRC cell lines, the promoter region of UNC5B was not methylated. Conclusion: UNC5B is a potential biomarker for the selection of patients with high risk of postoperative recurrence and worse prognosis in CRC.

Publication Title

Clinical significance of UNC5B expression in colorectal cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE102863
Comparison of gene expression between Hep3B tumors treated with sorafenib plus mouse-IFN treatment and those treated with sorafenib alone
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In our experiments with a xenograft model, mouse-IFN (mIFN) treatment was suggested to exaggerate the antitumor effects of sorafenib on hepatocellular carcinoma in vivo.

Publication Title

The in vivo antitumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48539
Gene expression profiling of LT-HSCs and ST-HSCs conditionally expressing MLL-ENL
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We have developed a new conditional transgenic mouse showing that MLL-ENL, at an endogenous-like expression level, induces leukemic transformation selectively in LT-HSCs. To investigate the molecular mechanism of leukemic transformation in LT-HSCs conditionally expressing MLL-ENL, we preliminarily performed comprehensive gene expression profiling of CreER-transduced LT-HSCs and ST-HSCs using cDNA microarray analysis.

Publication Title

Plzf drives MLL-fusion-mediated leukemogenesis specifically in long-term hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP078318
Embryonic retinal development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Embryonic retinal development Overall design: Mouse retinas at different embryonic developmental stages were isolated and mRNA expression was determined by RNA sequencing

Publication Title

Programmed mitophagy is essential for the glycolytic switch during cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE56921
Expression analysis of common myeloid progenitors (CMPs) expressing Hes1
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

High levels of Hes1 expression are frequently found in BCR-ABL-positive chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BClike disease; however the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-kB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of Hes1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, these CMPs secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BClike disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells.

Publication Title

Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49117
Expression analysis of 32Dcl3 cells expressing ASXL-MT in the presence of IL-3 or G-CSF
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS.

Publication Title

Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations.

Sample Metadata Fields

Cell line, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact