refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE33070
Adipose tissue gene expression associated with weight gain in kidney transplant recipients
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of this study was to investigate the association of gene expression profiles in subcutaneous adipose tissue with percent of total body weight change in 26 kidney transplant recipients.

Publication Title

Expression levels of obesity-related genes are associated with weight change in kidney transplant recipients.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE2375
Undifferentiated mouse embryonic stem cells, differentiated nestin-positive cells and fibroblast feeder layer.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Embryonic stem (ES) cells and ES cell-derived progeny characterized by nestin expression (including neural progenitors) were studied (three independent experiments). The mouse ES cell line R1 was cultured on a feeder layer of mouse embryonic fibroblasts (FL). ES cells were differentiated into nestin-positive cells for 4+8 days and 4+11 days according to the differentiation protocol by Rolletschek et al. (Mechanisms of Development 105, 93-104, 2001).

Publication Title

Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73883
Optimizing microarray gene expression profiling workflow for formalin-fixed paraffin-embedded tissues
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The use of nucleic acids from formalin-fixed paraffin-embedded (FFPE) tissues for high-throughput molecular techniques, such as microarray gene expression profiling has become widespread in molecular research area. However, working with FFPE tissues is challenging because of degradation, cross-linking with proteins, and RNA chemical modifications. Also, there is no generally accepted procedure for RNA extraction to microarray analysis. Thus, there is a need for a standardized workflow for FFPE samples to study microarray transcriptome profiling. Therefore, the main purpose of this study was to conduct a standardized process from deparaffinization to RNA extraction and microarray gene expression analysis. Firstly, deparaffinization procedure was optimized for FFPE samples and then Trizol, PicoPure RNA isolation kit, and Qiagen RNeasy FFPE kit performances were compared in terms of yield and purity. Finally, two different cRNA/cDNA preparation and labeling protocols with two different array platforms (Affymetrix Human Genome U133 Plus 2.0 and U133_X3P) were also evaluated to determine which combination gives the best percentage of present call. Our optimization study shows that the Qiagen RNeasy FFPE kit with modified deparaffinization step gives better results (RNA quantity and quality) than the other two isolation kits. The Ribo-SPIA protocol and U133_X3P array combination gave a significantly higher percentage of present calls than the 3 IVT cDNA amplification and labeling system. However, no significant differences were found between the two array platforms. These results present a workflow for microarray gene expression profiling of FFPE tissues. The findings also indicate that sufficient quality gene expression data can be obtained from FFPE-derived RNA.

Publication Title

Optimization of gene expression microarray protocol for formalin-fixed paraffin-embedded tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52032
14-3-3 overexpression-induced gene signature in MCF-10A cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To study the function of 14-3-3, we established MCF-10A human mammary epithelial cells transduced with 14-3-3 (10A.) and vector (10A.Vec)

Publication Title

14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE106200
RNA differencial expression data between scrambled siRNA-treated mice and HN1L siRNA-treated mice tumor samples
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

HN1L Promotes Triple-Negative Breast Cancer Stem Cells through LEPR-STAT3 Pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106106
mRNA differencial expression data between scrambled siRNA-treated mice and HN1L siRNA-treated mice tumor samples
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

(HN1L) is a targetable breast cancer stem cell (BCSC) gene that is altered in 25% of whole breast cancer and significantly correlated with shorter overall or relapse-free survival in triple negative breast cancer (TNBC) patients. HN1L silencing reduced the population of BCSCs, inhibited tumor initiation, re-sensitized chemo-resistant tumors to docetaxel, and hindered cancer progression in multiple TNBC cell line derived xenografts.

Publication Title

HN1L Promotes Triple-Negative Breast Cancer Stem Cells through LEPR-STAT3 Pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49981
Reciprocal transcriptional responses in the interaction between Arabidopsis thaliana and Tetranychus urticae.
  • organism-icon Arabidopsis thaliana
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

While pathogen-induced immunity is comparatively well characterized, far less is known about plant defense responses to arthropod herbivores. To date, most molecular-genetic studies of plant-arthropod interactions have focused on insects. However, plant-feeding (phytophagous) mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g., Lepidopteran larvae or aphids). The two-spotted spider mite, Tetranychus urticae, is among the most significant mite pests in agriculture. T. urticae is an extreme generalist that has been documented on a staggering number of plant hosts (more than 1,100), and is renowned for the rapid evolution of pesticide resistance. To understand reciprocal interactions between T. urticae and a plant host at the molecular level, we examined mite herbivory using Arabidopsis thaliana. Despite differences in feeding guilds, we found that transcriptional responses of A. thaliana to mite herbivory generally resembled those observed for insect herbivores. In particular, defense to mites was mediated by jasmonic acid (JA) biosynthesis and signaling. Further, indole glucosinolates dramatically increased mite mortality and development times. Variation in both basal and activated levels of these defense pathways might also explain differences in mite damage and feeding success between A. thaliana accessions. On the herbivore side, a diverse set of genes associated with detoxification of xenobiotics was induced upon exposure to increasing levels of in planta indole glucosinolates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores.

Publication Title

Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE68968
Expression data from Aortic Macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Normal arteries contain a large population of tissue resident macrophages (M). Their origins, as well as the mechanisms that sustain them during homeostasis and disease, however, are poorly understood. Gene expression profiling, we show, identifies arterial M as a distinct population among tissue M. Ontologically, arterial M arise before birth, though CX3CR1-, Csf1r-, and Flt3-driven fate mapping approaches demonstrate M colonization occurs through successive contributions of yolk sac (YS) and conventional hematopoiesis. In adulthood, arterial M renewal is driven by local proliferation rather than monocyte recruitment from the blood. Proliferation sustains M not only during steady state conditions, but mediates their rebound after severe depletion following sepsis. Importantly, the return of arterial M to functional homeostasis after infection is rapid; repopulated M exhibit a transcriptional program similar to resting M and efficiently phagocytose bacteria. Collectively, our data provide a detailed framework for future studies of arterial M function in health and disease.

Publication Title

Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth.

Sample Metadata Fields

Sex, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact