refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 18 results
Sort by

Filters

Technology

Platform

accession-icon SRP150586
Transcriptome of human decidual cells treated by siRNA targeting FOXO1
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Here we report the gene expression profile of in vitro cultured human endometrial stromal cells treated with siRNA targeting FOXO1 piror to eutherian differentiation media exposure. The eutherian differentiation media contains cyclic AMP (cAMP) analogue 8-Br-cAMP and the progesterone (P4) analogue medroxyprogesterone acetate (MPA). Overall design: RNA-seq on decidualizing human endometrial stromal cells treated with siRNA targeting FOXO1.

Publication Title

The mammalian decidual cell evolved from a cellular stress response.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE48643
A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Objective

Publication Title

A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39079
Foam cell specific LXR ligand
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

OBJECTIVE:

Publication Title

Foam cell specific LXRα ligand.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE35844
Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MiRNAs have the potential to regulate cellular differentiation programs. However, miRNA-deficiency in primary hematopoietic stem cells (HSCs) results in HSC depletion in mice, leaving the question of whether miRNAs play a role in early-lineage decisions unanswered. To address this issue, we deleted Dicer1, which encodes an essential RNaseIII enzyme for miRNA biogenesis, in murine CCAAT/enhancer-binding protein alpha (C/EBPA)-positive myeloid-committed progenitors in vivo. In contrast to the results in HSCs, we found that miRNA depletion affected neither the number of myeloid progenitors nor the percentage of C/EBPA-positive progenitor cells. Analysis of gene-expression profiles from wild type and Dicer1-deficient granulocyte-macrophage progenitors (GMPs) revealed that 20 miRNA families were active in GMPs. Of the derepressed miRNA targets in Dicer1-null GMPs, 27% are normally exclusively expressed in HSCs or are specific for multi-potent progenitors and erythropoiesis, indicating an altered gene-expression landscape. Dicer1-deficient GMPs were defective in myeloid development in vitro and exhibited an increased replating capacity, indicating a regained self-renewal potential of these cells. In mice, Dicer1 deletion blocked monocytic differentiation, depleted macrophages and caused myeloid dysplasia with morphological features of Pelger-Hut anomaly. These results provide evidence for a miRNA-controlled switch for a cellular program of self-renewal and expansion towards myeloid differentiation in GMPs.

Publication Title

Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41942
Overexpression of miR-9 and miR-9* in 32D cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Overexpression of miR-9 and miR-9* in 32D cells, cells grown under IL-3 conditions and miR-9 and miR-9* were introduced with retroviral vectors containing about ~150 bp up and downstream of mmu-mir-9-2.

Publication Title

Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE66052
Disruption of histone methylation in developing sperm impairs offspring health transgenerationally
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66050
Disruption of histone methylation in developing sperm impairs offspring health transgenerationally [sperm]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

A fathers lifetime experiences can be transmitted to his offspring to affect

Publication Title

Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP196721
Identification of SERPINE1 as a Regulator of Glioblastoma Cell Dispersal via Analyzing Dynamic Transcriptome of Dispersing Cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

With a model mimicking GBM tumor cell dispersal, transcriptome changes between core (immotile) and dispersive (motile) cells were analyzed. Many genes are differentially expressed between these populations. This study focused on the genes that are significantly upregulated in dispersive cells. Besides gene sets related with the cell cycle and cell survival, epithelial to mesenchymal transition gene set is upregulated in dispersive cells. In this gene set, this study identified SERPINE1 gene as an important regulator of GBM cell dispersal. Overall design: Examination of core and dispersive populations' transcriptome during U373 cell spheroid dispersal. 2 sets of samples were prepared each for core and dispersive cells.

Publication Title

Identification of <i>SERPINE1</i> as a Regulator of Glioblastoma Cell Dispersal with Transcriptome Profiling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE47700
Expression data for hematopoietic stem cells (lin- sca1+ ckit+) isolated from the bone marrow of Ercc1-deficient and proficient littermates
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify cellular and genetic abnormalities involved in interstrand cross link repair-deficient bone marrow failure and its transformation to leukemia, we used an Ercc1 hypomorphic mouse model (Ercc1 -/d).

Publication Title

ICL-induced miR139-3p and miR199a-3p have opposite roles in hematopoietic cell expansion and leukemic transformation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE56173
Expression data from Adult Drosophila with controled microbiota
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The microbial population that live within the gut of animals influences their physiology. We used axenic and recolonized flies to identify genes whose expression is modulated by the presence of a bacterial flora in the gut.

Publication Title

Drosophila microbiota modulates host metabolic gene expression via IMD/NF-κB signaling.

Sample Metadata Fields

Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact