refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 71 results
Sort by

Filters

Technology

Platform

accession-icon GSE45044
Age-mediated transcriptomic changes in adult mouse brain ventral tegmental area
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. However, ventral tegmental area (VTA), a region adjacent to SNpc, is less affected in PD. Until now, molecular mechanisms behind VTA aging have not been fully investigated using high throughput techniques.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45043
Age-mediated transcriptomic changes in adult mouse substantia nigra
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45045
Age-mediated transcriptomic changes in adult mouse substantia nigra and ventral tegmental area
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Age-mediated transcriptomic changes in adult mouse substantia nigra.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64755
Global transcriptome analysis identifies shade avoidance-related genes regulated by BBX24 in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In seedlings, the induction of shade avoidance syndrome (SAS) involves a rapid up-regulation for known shade marker genes and subsequently activates an interacting network of various hormones that will eventually lead to cell elongation. We found that the B-box protein AtBBX24 have positive effects on the SAS (positive regulators). Global expression analysis of col and bbx24 seedlings reveals that a large number of genes involved in hormonal signaling pathways are positively regulated by BBX24 in response to simulated shade.

Publication Title

The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP141174
Gene expression profiling in mouse fibroblast tumors with overexpression of the homeoprotein SIX1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Six1 is a developmental transcriptional regulator frequently overexpressed in human tumors. Recent results also show that SIX1 acts as a repressor of cell senescence, an antiproliferative response with key roles in tumor suppression, among other physiological and pathological settings. Here, we set to study the impact of SIX1 gain of function in transformation and tumorigenesis of fibroblasts, in connection with senescence. Using transcriptomic, histological, and functional analyses in murine cells and tumors of fibroblast origin, we show that SIX1 has a strong pro-tumorigenic action in this model, linked to the repression of a senescence-related gene signature and the activation of cellular plasticity, mediated at least in part by direct transcriptional regulation of the stemness factor Sox2. Moreover, functional analyses with human glioma cell lines also show that SIX1 controls SOX2 expression, senescence and self-renewal in this model. Collectively, our results support a general link of SIX1 with senescence and SOX2-mediated cell plasticity in tumors. Overall design: mRNA profiles were obtained from SIX1-overexpressing tumors and controls in triplicate by RNA-Seq using Illumina HiSeq.

Publication Title

SIX1 represses senescence and promotes SOX2-mediated cellular plasticity during tumorigenesis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE77366
Expression data from CD8 memory T cells after IN immunization compared to IM immunization
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Intranasal (IN) immunization induces different genotype expression in CD8 memory T cells compared to the CD8 memory T cells induced by intramuscular (IM) immunization. We used microarrays to detail the global program of gene expression underlying the differential induction after IN or IM immunization.

Publication Title

Induction of resident memory T cells enhances the efficacy of cancer vaccine.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE95609
Comparative transcriptional profiling of Arabidopsis yda11 mutant and wild-type plants after infection with Plectosphaerella cucumerina
  • organism-icon Arabidopsis thaliana
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Comparative transcriptomic analysis of Arabidopsis thaliana yda11 plants (in Col-0 background), and wild-type plants (Col-0) non-infected or infected with the necrotrophic fungal pathogen Plectosphaerella cucumerina BMM (PcBMM)

Publication Title

YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon SRP065590
RNAseq changes in mouse wound with or without time course treatment by Vemurafenib
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

BRAF inhibitors are highly effective therapies for patients with BRAF V600 mutated metastatic melanoma. Patients who receive BRAF inhibitors develop a variety of hyper-proliferative skin conditions, whose pathogenic basis is the paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyper-proliferative skin changes improve when a MEK inhibitor is co-administered, as a MEK inhibitor blocks paradoxical MAPK activation. We tested whether we could take advantage of the mechanistic understanding of the skin hyper-proliferative side effects of BRAF inhibitors to accelerate skin wound healing by inducing paradoxical MAPK activation. Here we show that the BRAF inhibitor vemurafenib accelerates human keratinocyte proliferation and migration by increasing ERK phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing models in mice accelerated cutaneous wound healing and improved the tensile strength of healing wounds through paradoxical MAPK activation; addition of a MEK inhibitor reversed the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor did not increase the incidence of cutaneous squamous cell carcinomas in mice even after the application of a carcinogen. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. Overall design: Full depth incisional wound mice tissues with/without Vemurafenib treatment were sent for RNAseq analysis on day 2, 6 and 14

Publication Title

Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE32664
Exon-level analyses of neuroblastoma
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

In this study, mRNA expression profiles of 113 primary untreated human neuroblastoma samples were compared with the aim to identify prognostic exon and gene sets as well as parameters associated with alternative exon use. The primary neuroblastoma specimens were from tumor banks in Cologne or Essen, Germany, Ghent, Belgium and Valencia, Spain. All patients were diagnosed between 1998 and 2007 and treated according to the German Neuroblastoma trials NB97, NB 2004 or the SIOPEN protocol.

Publication Title

Smac mimetic LBW242 sensitizes XIAP-overexpressing neuroblastoma cells for TNF-α-independent apoptosis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP124530
Differential splicing events in aging Drosophila eye
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: The goal of this study was to identify differential splicing events in the Drosophila eye during aging. Overall design: Method: RNA extracted from dissected eye tissue of flies aged 10 and 40 days post-eclosion was used to generate cDNA libraries using NuGen Ovation Drosophila RNA seq system. Samples were sequenced using Illumina HiSeq2500 next generation sequencer (three biological replicates per time point).

Publication Title

Proper splicing contributes to visual function in the aging Drosophila eye.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact