refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 13 results
Sort by

Filters

Technology

Platform

accession-icon GSE18975
Natural variation of auxin response
  • organism-icon Arabidopsis thaliana
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To assess natural variation of downstream auxin responses we subjected 7 different arabidopsis ecotypes to a time course of auxin treatments. 7d-old seedlings grown in liquid culture have been treated for 0, 30 min, 1h and 3h with 1 M IAA.

Publication Title

Natural variation of transcriptional auxin response networks in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE109248
Genome-wide analysis of gene expression of cutaneous lupus and cutaneous psoriasis lesions
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Human skin samples from cutaneous lupus subtypes, psoriasis, and normal patients were used to corroborate findings of Fas Ligand elevation in a murine model of cutaneous lupus

Publication Title

Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus-like inflammation.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE83862
Expression profiling of total salivary gland from NOD.H-2h4 mice with CD40L blockade
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Autoantibodies that arise in autoimmunity can be present years to decades prior to the onset of disease manifestations. This suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which then drives disease pathology in local tissues later in life. To explore the impact of early peripheral immune dysregulation on the progression of Sjgrens Syndrome, we blocked the CD40-CD40L pathway in young female NOD.H-2h4 mice at 4 weeks of age with a single injection of anti-CD40L antibody, and collected total salivary gland at the age of week 8, 16 and 24. RNA was extracted and submitted to transcriptome profiling using Affymetrix microarray.

Publication Title

Autoimmune manifestations in aged mice arise from early-life immune dysregulation.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP133278
RNA sequencing of B cell subsets (CD11c hi IgD+ B cells, CD11c hi IgD- B cells, Memory B cells and Naïve B cells) from healthy subjects and subjects with Systemic lupus erythematosus (SLE) or Rheumatoid arthritis (RA)
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

CD11c+ B cells (IgD+ and IgD-) are pathogenic B cells expanded in autoimmune disease. The purpose of this study is to identify the pathways unique to IgD+ CD11c B cells and IgD- CD11c B cells. Overall design: B cell subsets were isolated from peripheral blood and RNA sequencing was performed with Hiseq 2000 platform

Publication Title

IL-21 drives expansion and plasma cell differentiation of autoreactive CD11c<sup>hi</sup>T-bet<sup>+</sup> B cells in SLE.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon SRP177950
Epigenetic modulation of ß-cells by interferon-a via PNPT11-miR-26a-TET2 triggers autoimmune diabetes [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Type 1 diabetes (T1D) is caused by autoimmune destruction of pancreatic ß cells. Mounting evidence supports a central role for ß-cell alterations in triggering the activation of self-reactive T-cells in T1D. However, the early deleterious events that occur in ß cells, underpinning islet autoimmunity are not known. We hypothesized that epigenetic modifications induced in ß cells by inflammatory mediators play a key role in initiating the autoimmune response. We analyzed DNA methylation (DNAm) patterns and gene expression in human islets exposed to IFNa, a cytokine associated with T1D development. We found that IFNa triggers DNA demethylation and increases expression of genes controlling inflammatory and immune pathways. We then demonstrated that DNA demethylation was caused by up-regulation of the exoribonuclease, PNPase Old-35 (PNPT1), which caused degradation of miR-26a. This in turn promoted the up-regulation of ten-eleven translocation TET2 enzyme and increased 5-hydoxymethylcytosine levels in human islets and pancreatic ß-cells. Moreover, we showed that specific IFNa expression in the ß cells of IFNa-INS1CreERT2 transgenic mice, led to development of T1D that was preceded by increased islet DNA hydroxymethylation through a PNPT1/TET2-dependent mechanism. Our results suggest a new mechanism through which IFNa regulates DNAm in ß cells, leading to changes in expression of genes in inflammatory and immune pathways that can initiate islet autoimmunity in T1D. Overall design: We exposed human pancreatic islets from three donors to 2000 IU IFNa and assessed gene expression by RNAseq. The cDNA library was prepared using Illumina TruSeq RNA Sample Prep Kits. Next generation sequencing was performed on Illumina HiSeq2000 using the Single-Read Cluster Generation kit v2 and SBS Sequencing kit v3. Image analysis and base calling were conducted using the SDS 2.5/RTA1.5 software.

Publication Title

Epigenetic modulation of β cells by interferon-α via PNPT1/mir-26a/TET2 triggers autoimmune diabetes.

Sample Metadata Fields

Specimen part, Disease stage, Treatment, Subject

View Samples
accession-icon SRP034556
Ikaros mutation confers integrin-dependent pre-B cell survival and progression to acute lymphoblastic leukemia
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Deletion of the Ikaros DNA-binding domain generates dominant-negative isoforms that interfere with Ikaros family activity and correlate with poor prognosis in human precursor B cell acute lymphoblastic leukemias (B-ALL).  Here, we show that conditional inactivation of the Ikaros DNA binding domain in early pre-B cells arrests their differentiation at a stage where integrin-dependent niche adhesion augments mitogen-activated protein kinase signaling, proliferation, and self-renewal, and attenuates pre-B cell receptor signaling and differentiation. Transplantation of polyclonal Ikzf1 mutant pre-B cells results in long-latency oligoclonal pre-B-ALL, demonstrating that loss of Ikaros contributes to multistep B-leukemogenesis. These results explain how normal pre-B cells transit from a highly proliferative and stromal-dependent to a stromal-independent phase where differentiation is enabled, providing potential therapeutic strategies for IKZF1 mutant B-ALL.   Overall design: One of the analyses described in this manuscript is the differential gene expression of large preB cells sorted from the bone marrow of WT and IKDN mice. The RNASeq method and Deseq analysis algorithm were employed

Publication Title

Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33121
Expression data from ESC and in vitro derived somatic cells and germ cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We performed gene expression profiling on in vitro derived PGCs, undifferentiated ESCs, and somatic cells from the EB to examine germ cell expression in ESC-derived cells

Publication Title

Single cell analysis facilitates staging of Blimp1-dependent primordial germ cells derived from mouse embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE117463
Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Human mucosal surfaces contain a wide range of microorganisms. The biological effects of these organisms are largely unknown. Large-scale metagenomic sequencing is emerging as a method to identify novel microbes. Unexpectedly, we identified DNA sequences homologous to virus ATCV-1, an algal virus not previously known to infect humans, in oropharyngeal samples obtained from healthy adults. The presence of ATCV-1 was associated with a modest but measurable decrease in cognitive functioning. A relationship between ATCV-1 and cognitive functioning was confirmed in a mouse model, which also indicated that exposure to ATCV-1 resulted in changes in gene expression within the brain. Our study indicates that viruses in the environment not thought to infect humans can have biological effects.

Publication Title

Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE59949
Expression data from human dental follicle cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

We analysed the genexpression of dental follicle cells (DFCs) after 3 days osteogenic differentiation with BMP2 after transfection with a DLX3 plasmid (pDLX3) and after transfection with an empty plasmid (pEV)

Publication Title

A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs).

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14067
Kidney transplantation
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, we examined transcriptional profiles from 3 different microarray platforms, across 103 peripheral blood samples with and without acute rejection, to find a critical gene-set for the diagnosis of acute renal rejection that matched biopsy diagnosis, irrespective of patient demographics, clinical confounders, concomitant infection, immunosuppression usage or sample processing methods. We hypothesized that changes in peripheral blood expression profiles correlate with biopsy-proven rejection, and that these changes could be used as biomarkers for the diagnosis and prediction of acute rejection.

Publication Title

A peripheral blood diagnostic test for acute rejection in renal transplantation.

Sample Metadata Fields

Disease, Disease stage

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact