refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE21654
Expression data from 22 Pancreatic Cancer Cell Lines
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to analyze the global expression patterns for 22 commercially available pancreatic cancer cell lines

Publication Title

Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE23952
Expression data from TGF-beta treated Panc-1 pancreatic adenocarcinoma cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

TGF-beta treatment of Panc-1 pancreatic adenocarcinoma cell line on Affymetrix HG_U133_plus_2 arrays; triplicate experiments.

Publication Title

Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP164678
A novel population of Hopx-dependent human-like basal radial glial cells in the developing mouse neocortex
  • organism-icon Mus musculus
  • sample-icon 213 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

A specific subpopulation of neural progenitor cells, the basal radial glia cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that developing mouse medial neocortex, in contrast to the canonically studied lateral neocortex, exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse lateral neocortex, the bRGCs in medial neocortex exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medial neocortex and forced Hopx expression in mouse embryonic lateral neocortex demonstrate that Hopx is required and sufficient, respectively, for a bRGC abundance as found in developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medial neocortex that is highly related to bRGCs of developing gyrencephalic neocortex. Overall design: 221 single-cell transcriptomes from microdissected medial neocortex of E18.5 mouse embryos (two independent analyses using a pool of 8 neocortices each).

Publication Title

A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE51130
Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Original patient tumor is directly implanted in mice xenografts. Tumor is propagated to multiple mice for conduct of 6 arm treatment trials and control. Therapies are selected based on T0 and F0 genomic profiles.

Publication Title

Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP100987
Transctriptional profiling of murine hematopoietic stem and progenitor cells upon ß-glucan administration
  • organism-icon Mus musculus
  • sample-icon 100 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Objective: Transcriptional profiling of murine HSPC in response to ß-glucan-induced innate immune training Overall design: HSPC mRNA profiles of wild type (WT) mice injected with PBS or ß-glucan. Wild type (WT) C57BL/6 mice were intraperitoneally injected with PBS or 1 mg ß-glucan in PBS. Mice were sacrificed on day 7 or day 28 and long-term heematopoietic stem cells (LT-HSC) and/or multipotent progenitors (MPP) were sorted. In another group, mice were injected with PBS or 1 mg ß-glucan in PBS and on day 7 they were additionally injected with 150 mg/kg 5-fluouracil. Mice were sacrificed on day 14 after 5-FU administration and LT-HSC were sorted.

Publication Title

Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE113736
Gene expression profiling of mesenchymal stem cells from bone marrow of multiple myeloma patients and normal donors
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [AltAnalyz probeset-to-Ensembl mapping (huex10st)

Description

A growing body of evidence points to the essential role of bone marrow (BM) tumor microenvironment in Multiple Myeloma (MM) maintenance and progression. Mesenchymal stem cells (MSC) are one of the most important players in this scenario. Through direct and indirect interactions, these cells support MM cells by promoting increase of proliferation, migration, survival, and drug resistance. Additionally, an increasing number of evidence has been demonstrating that MSC from MM patients (MM-MSC) have several abnormalities when compared with their normal counterpart from normal donors (ND-MSC). Therefore, the aimed of our study was to explore the differences between MM-MSC and ND-MSC through gene expression analysis.

Publication Title

Transcriptome Analysis of Mesenchymal Stem Cells from Multiple Myeloma Patients Reveals Downregulation of Genes Involved in Cell Cycle Progression, Immune Response, and Bone Metabolism.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact