refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE113233
Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Analysis of strain-specific differences in gene expression in brains from a hydrocephalic mouse model of primary ciliary dyskinesia. The results identify genes that are differentially expressed between C57BL6/J and 129S6/SvEvTac brains. These genes encode proteins that function in a variety of cellular processes and include some that are relevant to hydrocephalus and cilia function, providing insight into the mechanisms underlying susceptibility to hydrocephalus.

Publication Title

Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP059643
Ubiquitin-dependent turnover of MYC promotes loading of the PAF complex on RNA Polymerase II to drive transcriptional elongation (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconNextSeq500, IlluminaGenomeAnalyzerIIx

Description

The MYC transcription factor is an unstable protein and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that proteasomal turnover of MYC is dispensable for recruitment of RNA polymerase II (RNAPII), but is required to promote transcriptional elongation at MYC target genes. Degradation of MYC stimulates histone acetylation and recruitment of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII CTD and the release of elongating RNAPII. In the absence of degradation, the RNA polymerase II-associated factor (PAF) complex associates with MYC via interaction of its CDC73 subunit with a conserved domain in the amino-terminus of MYC ("MYC box I"), suggesting that a MYC/PAF complex is an intermediate in transcriptional activation. Since histone acetylation depends on a second highly conserved domain in MYCs amino-terminus ("MYC box II"), we propose that both domains co-operate to transfer elongation factors onto paused RNAPII. Overall design: RNA-Seq Experiments were performed in a primary breast epithelial cell line (IMEC).The cell line expressed doxycycline-inducible versions of MYC (WT;Kless,Swap=WTN-KC). Where indicated cells were transfected with siRNAs (siCtrl;siSKP2). Where indicated cells were treaed with the proteasome inhibitor MG132 or EtOH as solvent control. DGE was performed by comparing Dox-treated populations expressing either Dox-inducible MYC or a vector control or comparing Dox-induced cells with EtOH (solvent control) treated cells.

Publication Title

Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE153703
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.

Publication Title

The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP055475
A MYC-driven change in mitochondrial dynamics limits stem cell properties of mammary epithelial cells (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

In several developmental lineages, an increase in expression of the MYC proto-oncogene drives the transition from quiescent stem cells to transit amplifying cells. The mechanism by which MYC restricts self-renewal of adult stem cells is unknown. Here, we show that MYC activates a stereotypic transcriptional program of genes involved in protein translation and mitochondrial biogenesis in mammary epithelial cells and indirectly inhibits the YAP/TAZ co-activators that are essential for mammary stem cell self-renewal. We identify a phospholipase of the mitochondrial outer membrane, PLD6, as the mediator of MYC activity. PLD6 mediates a change in the mitochondrial fusion/fission balance that promotes nuclear export of YAP/TAZ in a LATS- and RHO-independent manner. Mouse models and human pathological data confirm that MYC suppresses YAP/TAZ activity in mammary tumors. PLD6 is also required for glutaminolysis, arguing that MYC-dependent changes in mitochondrial dynamics balance cellular energy metabolism with the self-renewal potential of adult stem cells. Overall design: RNA-Seq Experiments in 2 different primary breast epithelial cell lines (HMLE, which were sorted according to CD44/CD24 surface markers & unsorted IMEC). Both cell lines expressed a doxycycline-inducible version of MYC. For the HMLE cell line DGE analysis was performed for the uninduced (EtOH) situation, comparing CD44high vs CD44 low and for the induced situation Dox vs. EtOH for the CD44high population. For the IMEC cell line DGE was performed by comparing Dox-treated populations expressing either Dox-inducible MYC or a vector control which allows to filter out potential effects due to doxycycline treatment.

Publication Title

A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact