refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 48 results
Sort by

Filters

Technology

Platform

accession-icon GSE62178
Mastermind-like protein 1 regulates DNA methylation and expression of early developmental gene clusters in human embryonic kidney cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcriptional coregulator MAML1 affects DNA methylation and gene expression patterns in human embryonic kidney cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62175
Mastermind-like protein 1 regulates DNA methylation and expression of early developmental gene clusters in human embryonic kidney cells (expression)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Mastermind-like 1 (MAML1) is a transcriptional coregulator that has been associated with early development of many systems such as neuronal, muscular, cardiovascular and urogenital. The present study aimed to explore the genome-wide effects of MAML1 on gene expression and DNA methylation in human embryonic kidney cells. RNA expression was measured using a microarray that screens approximately 36,000 transcripts, and DNA methylation was determined for 450,000 CpG sites. 225 genes were found to be differentially expressed, while 11802 CpG sites were found to be differentially methylated in MAML1-expressing cells. A subset of 211 differentially methylated loci was associated with the expression of 85 genes. Gene ontology analysis revealed that these genes are involved in the regulation of urogenital system development, cell adhesion and embryogenesis.

Publication Title

The transcriptional coregulator MAML1 affects DNA methylation and gene expression patterns in human embryonic kidney cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE12828
Expression profiles of human carotid plaques
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This analysis compares gene expression in human carotid plaques with gene expression in major tissues and cell types in the human body (GSE1133, Su et al. 2004).

Publication Title

Expression of chemokine (C-C motif) ligand 18 in human macrophages and atherosclerotic plaques.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9874
Expression profiles of human macrophages
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The project was designed to identify genes with an altered expression in macrophages from subjects with atherosclerosis compared to macrophages from control subjects.

Publication Title

Expression profiling of macrophages from subjects with atherosclerosis to identify novel susceptibility genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE110870
Expression profile of whole murine lung adenocarcinomas with or without knockdown of Snail
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We used microarrays to study the changes in the transcriptional profile upon Snail knockdown in murine lung adenocarcinomas

Publication Title

Snail mediates repression of the Dlk1-Dio3 locus in lung tumor-infiltrating immune cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE110871
Expression profile of whole murine lung adenocarcinomas with or without overexpression of Snail
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We used microarrays to study the changes in the transcriptional profile upon Snail overexpression in murine lung adenocarcinomas

Publication Title

Snail mediates repression of the Dlk1-Dio3 locus in lung tumor-infiltrating immune cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE73354
Discovery of progenitor signatures by time series synexpression analysis during Drosophila cell immortalization
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP064105
Discovery of progenitor signatures by time series synexpression analysis during Drosophila cell immortalization [RNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To characterize the sequence of events associated with RasV12 immortalization of Drosophila embryonic cells, we generated transcriptional time series during cell line establishment, from primary cultures until passage (P) 19. Overall design: We generated three transcriptional time series from three cell lines (R1, R4 and R5) by sampling the cultures at successive stages, early (P2-4), intermediate (P4-11), and late (P16-19), characterized by different passage times. Time points for the R1 time-series were: P2, P3, P4, P5, P7, P8, P10, P11, P16, P17 and P19; for the R4 time-series: P2, P3, P4, P5, P6, P7, P9, P11, P12, P16, P17 and P19; and for the R5 time-series: P2, P3, P4, P6, P7, P8, P16, P17 and P19

Publication Title

Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE73335
Discovery of progenitor signatures by time series synexpression analysis during Drosophila cell immortalization [Microarray Expression]
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

To characterize the sequence of events associated with RasV12 immortalization of Drosophila embryonic cells, we generated transcriptional time series during cell line establishment, from primary cultures until passage (P) 19.

Publication Title

Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP021535
Minotaur is critical for primary piRNA biogenesis [RNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Piwi proteins and their associated small RNAs are essential for fertility in animals. This is due, in part, to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and as such form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous-sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. Overall design: Examination of transcriptom profile in heterozygous and homozygous CG5508 mutant ovaries

Publication Title

Minotaur is critical for primary piRNA biogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact