refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 68 results
Sort by

Filters

Technology

Platform

accession-icon SRP126489
Differential RNASeq of human nasal epithelial cells stimulated with RIG-I ligand SLR14
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The purpose of this study was to assess transcriptome changes in primary human airway epithelial cells following stimulation with RIG-I ligand. Overall design: MRNA profiles were generated from primary human airway epithelial cells at rest or following stimulation with RIG-I ligand SLR-14.

Publication Title

Regional Differences in Airway Epithelial Cells Reveal Tradeoff between Defense against Oxidative Stress and Defense against Rhinovirus.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP126487
Differential RNASeq of human bronchial epithelial cells stimulated with RIG-I ligand SLR14
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The purpose of this study was to assess transcriptome changes in primary human airway epithelial cells following stimulation with RIG-I ligand. Overall design: MRNA profiles were generated from primary human airway epithelial cells at rest or following stimulation with RIG-I ligand.

Publication Title

Regional Differences in Airway Epithelial Cells Reveal Tradeoff between Defense against Oxidative Stress and Defense against Rhinovirus.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE47920
Expression data from T lymphocytes derived from T-iPS and peripheral blood
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T lymphocytes can be generated from T-cell-derived induced pluripotent stem cells (T-iPS). We used microarrays to better elucidate their phenotype and compare their gene expression profile to that of known lymhoid subsets from peripheral blood.

Publication Title

Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55804
Expression data from 26972c yeast bHLHm1 (SAT1)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

26972c yeast cells were transformed with either empty vector (pYES3) or pYES3:Gm:bHLHm1. Cells were grown on low ammonium concentrations to observe transcriptional changes in the yeast genome in response to the soybean bHLHm1 transcription factor.

Publication Title

Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51143
Effect of BET inhibitors (JQ1 and RVX-208) on gene expression in HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Bromodomains have emerged as attractive candidates for the development of inhibitors targeting gene transcription. Inhibitors of the bromo-and-extra-terminal (BET) family recently showed promising activity in diverse disease models. However, the pleiotropic nature of BET proteins regulating tissue specific transcription has raised safety concerns and suggested that attempts should be made for domain-specific targeting. Here we report that RVX-208, a compound currently in phase II clinical trials, is a BET bromodomain inhibitor specific for second bromodomains (BD2). Co-crystal structures revealed binding modes of RVX-208 and its synthetic precursor and fluorescent recovery after photobleaching demonstrated that RVX-208 displaces BET proteins from chromatin. However, gene expression data showed that BD2 inhibition only modestly affects BET-dependent gene transcription. Our data demonstrate the feasibility of specific targeting within the BET family resulting in different transcriptional outcomes and highlight the importance of BD1 in transcriptional regulation

Publication Title

RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE78830
Promiscuous targeting of bromodomains by Bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia
  • organism-icon Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE78829
Promiscuous targeting of bromodomains by Bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia [set2]
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Bromodomains (BRDs) have emerged as compelling targets for cancer therapy. The development of selective and potent BET inhibitors and their significant activity in diverse tumor models has rapidly translated into clinical studies and has motivated drug development efforts targeting non-BET BRDs. However, the complex multidomain/subunit architecture of bromodomain protein complexes complicates predictions of consequences of their pharmacological targeting. To address this issue we developed a promiscuous bromodomain inhibitor (bromosporine, BSP) that broadly targets BRDs (including BETs) with nanomolar affinity, creating a tool for the identification of cellular processes and diseases where BRDs have a regulatory function. As a proof of principle we studied the effect of BSP in leukemic cell-lines known to be sensitive to BET inhibition and found as expected strong anti-proliferative activity. Comparison of the modulation of transcriptional profiles by BSP at short inhibitor exposure resulted in a BET inhibitor signature but no significant additional changes in transcription that could account for inhibition of other BRDs. Thus, non-selective targeting of BRDs identified BETs, but not other BRDs, as master regulators of a context dependent primary transcription response.

Publication Title

Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE78827
Promiscuous targeting of bromodomains by Bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia [set 1]
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Bromodomains (BRDs) have emerged as compelling targets for cancer therapy. The development of selective and potent BET inhibitors and their significant activity in diverse tumor models has rapidly translated into clinical studies and has motivated drug development efforts targeting non-BET BRDs. However, the complex multidomain/subunit architecture of bromodomain protein complexes complicates predictions of consequences of their pharmacological targeting. To address this issue we developed a promiscuous bromodomain inhibitor (bromosporine, BSP) that broadly targets BRDs (including BETs) with nanomolar affinity, creating a tool for the identification of cellular processes and diseases where BRDs have a regulatory function. As a proof of principle we studied the effect of BSP in leukemic cell-lines known to be sensitive to BET inhibition and found as expected strong anti-proliferative activity. Comparison of the modulation of transcriptional profiles by BSP at short inhibitor exposure resulted in a BET inhibitor signature but no significant additional changes in transcription that could account for inhibition of other BRDs. Thus, non-selective targeting of BRDs identified BETs, but not other BRDs, as master regulators of a context dependent primary transcription response.

Publication Title

Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE11664
gene expression of CTCF-depleted mouse oocyte
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CTCF is a multifunctional nuclear factor involved in epigenetic regulation. We have used transgenic RNA interference to deplete maternal stores of CTCF from growing mouse oocytes, and identified the potential target genes

Publication Title

Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18377
Gene expression profiling of human DLBCL tumor samples (FF and FFPE pairs)
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We profiled human DLBCL tumor samples (FF and FFPE matched pairs) to identify the transcripts which are less prone to degradation in FFPE

Publication Title

CD40 pathway activation status predicts response to CD40 therapy in diffuse large B cell lymphoma.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact