refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 180 results
Sort by

Filters

Technology

Platform

accession-icon GSE89963
RNA profiling of mouse mammary tumor cell redirection in vitro model.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We have developed an in vitro system of cancer cell redirection that employs the 1:50 ratio of cancer cells to normal cells. Using our in vitro system of cancer cell redirection we investigated the genetic profiles of erbB2-overexpressing mammary tumor-derived cells as they undergo the redirection phenomenon.

Publication Title

RNA Expression Profiling Reveals Differentially Regulated Growth Factor and Receptor Expression in Redirected Cancer Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP119636
Integration of genome-wide analysis to characterize long noncoding RNAs in diverse immune cell types of the stage IV melanoma patients
  • organism-icon Homo sapiens
  • sample-icon 127 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We investigated the expression profiles in the CD4+, CD8, and CD14+ peripheral blood cells (PBLs) of the stage IV melanoma patients and the healthy donors. Overall design: Examination of long noncoding RNA in the CD4+, CD8, and CD14+ peripheral blood cells (PBLs) of the stage IV melanoma patients and the healthy donors.

Publication Title

Integrative Genome-Wide Analysis of Long Noncoding RNAs in Diverse Immune Cell Types of Melanoma Patients.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP136484
Viral shRNA Knockdown of INS Promotor Activity in EndoC-ßH1 Cells 
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To inhibit INS expression, we used shRNA to target the INS promoter. We find that knocking down INS expression with such an shRNA targeting the INS promoter significantly affects expression of 259 genes. Overall design: mRNA profiles of EndoC ßH1 with or without shRNA targetting INS promoter were generated by deep sequencing, in triplicate, using Illumina Hiseq 2500.

Publication Title

<i>Insulin</i> promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE89524
Identification of differentially expressed miRNAs between SW480 and SW620 spheroid cultures
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE89523
Identification of differentially expressed genes between SW480 and SW620 spheroid cultures [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The colorectal cancer (CRC) cell line pair SW480/SW620 is an accepted model to study CRC progression and metastasis formation. Studying gene expression differences might allow to uncover molecular mechanisms that underlie metastasis initiation

Publication Title

The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE31628
Gene expression profiles of DFCs and SHED 48 hours after in vitro transfection with a TP53 plasmid, a SP1 plasmid, or an empty vector.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Dental follicle is a loose connective tissue that surrounds the developing tooth. Dental follicle cells (DFCs) have a promising potential for tissue engineering applications including periodontal and bone regeneration. However, little is known about the molecular mechanisms underlying osteogenic differentiation. In a previous study we detected that more than 35 % of genes that are regulated during osteogenic differentiation of DFCs have promoter binding sites for the transcription factors TP53 and SP1. However, the role of these transcription factors in dental stem cells is still unknown. We hypothesize that both factors influence the processes of cell proliferation and differentiation in dental stem cells. Therefore, we transiently transfected DFCs and dental pulp stem cells (SHED; Stem cells from human exfoliated decidiuous teeth) with expression vectors for these transcription factors. After overexpression of SP1 and TP53, SP1 influenced cell proliferation and TP53 osteogenic differentiation in both dental cell types. The effects on cell proliferation and differentiation were less pronounced after siRNA mediated silencing of TP53 and SP1. This indicates that the effects we observed after TP53 and SP1 overexpression are indirect and subject of complex regulation. Interestingly, upregulated biological processes in DFCs after TP53-overexpression resemble the downregulated biological processes in SHED after SP1-overexpression. Here, regulated processes are involved in cell motility, wound healing and programmed cell death. In conclusion, our study demonstrates that SP1 and TP53 influence cell proliferation and differentiation and similar biological processes in both SHED and DFCs.

Publication Title

Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16741
Gene Expression in Mutant P0 Cre Dicer Mouse Sciatic Nerves
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The hypothesis is that genes involved in the immature schwann cell and promyelinating state will be upregulated and genes that are involved in the myelnating state will be down regulated.

Publication Title

MicroRNA-deficient Schwann cells display congenital hypomyelination.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE20963
Gene expression profiles of dental follicle cells after 7 days of differentiation in vitro with BMP2, IGF2 and dexamethasone
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We analysed gene expression profiles in dental follicle cells after 7 days of osteogenic differentiation with different inducers.

Publication Title

The differentiation and gene expression profile of human dental follicle cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP033489
Ago1 vs Ago2-IP small RNA deep-sequencing with age in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Drosophila miRNAs show distinct change in isoform distribution pattern with age. Some miRNAs show accumulation of the short isoforms, while other miRNAs show the accumulation of the long isoforms with age. The increase of the long isoforms of some miRNAs reflects increased 2''-O-methylated miRNA isoforms with age. The increase in 2''-O-methylated miRNA isoforms reflected increased Ago2-loading, but not Ago1-loading of specific miRNA isoforms with age. This raised a question on whether there is global shift in small RNA loading pattern between Ago1 and Ago2 with age. To investigate change in small RNA loading pattern between Ago1 and Ago2 with age, we performed small RNA deep-sequencing of Ago1 vs Ago2-IP small RNAs at 3d and 30d in Drosophila. This analysis revealed global increase of miRNA loading into Ago2, but not into Ago1 with age. Overall design: 3d and 30d FLAG-HA-Ago2 male flies were collected. Ago1 and Ago2 were immunoprecipitated by anti-Ago1 and anti-FLAG M2 beads respectively. RNA was purified from the beads, P32-labeled, and small RNA fraction was gel-purififed. Small RNA libraries were prepared using Illumina''s TruSeq small RNA sample preparation kit (#RS-200-0012, Illumina, Inc. San Diego, CA), following the manufacturer''s protocol. The libraries were multiplexed and sequenced on HiSeq2000 platform (Illumina).

Publication Title

Impact of age-associated increase in 2'-O-methylation of miRNAs on aging and neurodegeneration in Drosophila.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE42677
Defining an invasion signature at the leading edge of cutaneous squamous cell carcinoma (SCC): IL-24 driven MMP-7 and MMP-13 expression.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Purpose: Primary cutaneous squamous cell carcinoma (SCC) can be an invasive cancer in skin and has the potential to metastasize. We aimed to define the cancer related molecular changes that distinguish non-invasive from invasive SCC.

Publication Title

Gene expression profiling of the leading edge of cutaneous squamous cell carcinoma: IL-24-driven MMP-7.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact