refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 738 results
Sort by

Filters

Technology

Platform

accession-icon SRP013491
Zea mays Transcriptome or Gene expression
  • organism-icon Zea mays
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues, which contributed to making P1 an important visual marker since the dawn of modern genetics. We conducted RNA-Seq using pericarps at two different stages, 14 and 25 days after pollination (DAP). High-throughput sequencing using the Illumina platform resulted in the generation of ~20 million high quality reads, from which ~90% aligned to the recently completed maize genome sequence corresponding to ~5 million reads for each one of the four samples. Overall design: Examination of two different RNA samples from two different stages of maize pericarp tissues.

Publication Title

A genome-wide regulatory framework identifies maize pericarp color1 controlled genes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP013490
Zea mays Transcriptome or Gene expression
  • organism-icon Zea mays
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues, which contributed to making P1 an important visual marker since the dawn of modern genetics. We conducted RNA-Seq using from maize silks obtained at 2-3 days after emergence. High-throughput sequencing using the Illumina platform resulted in the generation of ~14 million high quality reads, corresponding to ~7 million reads for each sample, from which 76% aligned to the maize genome. Overall design: Examination of two different RNA samples from maize silks obtained at 2-3 days after emergence

Publication Title

A genome-wide regulatory framework identifies maize pericarp color1 controlled genes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE11361
Genetic variants in Major Histocompatibility Complex-linked genes Associate with Pediatric Liver Transplant Rejection
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st), Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Limited access to large samples and independent replication cohorts precludes genome-wide association (GWA) studies of rare but complex traits. To localize candidate genes in an on-going study utilizing family-based GWA, a novel exploratory analysis was first tested on 1,774 major histocompatibility complex single nucleotide polymorphisms (SNPs) in 240 DNA samples from 80 children with primary liver transplantation (LTx), and their biological parents. Genotyping was performed using the Illumina HumHap550k SNP BeadArray; the genotype calls for the 1813 SNPs in the MHC region are provided in the genotype_data.zip supplementary file linked to this series (see README file in the zip archive for more information).

Publication Title

Genetic variants in major histocompatibility complex-linked genes associate with pediatric liver transplant rejection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11360
Exon-level summary data from Affymetrix Human Exon 1.0 ST array
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

The Affymetrix Human Exon 1.0 ST array was used to measure differential splicing patterns in archived RNA isolated from 26 of 80 children (11 Rejectors and 15 Non-Rejectors). The exon-level probe summaries reported in this series were computed using the Affymetrix Power Tools (APT) software and 'rma-sketch' normalization method.

Publication Title

Genetic variants in major histocompatibility complex-linked genes associate with pediatric liver transplant rejection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11359
Gene-level summary data from Affymetrix Human Exon 1.0 ST array
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The Affymetrix Human Exon 1.0 ST array was used to measure differential splicing patterns in archived RNA isolated from 26 of 80 children (11 Rejectors and 15 Non-Rejectors). The gene-level probe summaries reported in this series were computed using the Affymetrix Power Tools (APT) software and 'rma-sketch' normalization method.

Publication Title

Genetic variants in major histocompatibility complex-linked genes associate with pediatric liver transplant rejection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12837
Gene expression in human myeloid cells.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.

Publication Title

Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12803
Gene expression in human myeloid cells
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.

Publication Title

Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062223
The Polycomb protein BMI1 induces an invasive gene expression signature in melanoma that promotes metastasis and chemoresistance.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The epigenetic regulator BMI1 is upregulated in many human malignancies and has been implicated in cell migration, but the impact on autochthonous tumor progression is unexplored. Our analyses of human expression data show that BMI1 levels increase with progression in melanoma. We find that BMI1 expression in melanoma cells does not influence cell proliferation or primary tumor growth. In contrast, BMI1 levels are a key determinant of melanoma metastasis, whereby deletion impairs and overexpression enhances dissemination. Remarkably, BMI1’s pro-metastatic effect reflects enhancement of all stages of the metastatic cascade including invasion, migration, extravasation, adhesion and survival. Additionally, downregulation or upregulation of BMI1 induces sensitivity or resistance to BRAF inhibitor. Consistent with these pleiotropic effects, we find that BMI1 promotes widespread gene expression changes that encompass key hallmarks of the melanoma invasive signature, including activation of TGFß, non-canonical Wnt, EMT and EGF/PDGF pathways. Importantly, for both primary and metastatic melanoma samples, this BMI1-induced signature identifies invasive subclasses of human melanoma and predicts poor patient outcome. Our data yield key insights into melanoma biology and establish BMI1 as a compelling drug target whose inhibition would suppress both metastasis and chemoresistance. Overall design: Three replicates of A375 BMI1 or GFP overexpressing cells.

Publication Title

BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2218
Changes in transcript abundance and association with large polysomes in response to hypoxia stress
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

7d-old WT ler seedlings were submitted to 12h of non-stress (air) or hypoxia-stress treatment under low light conditions (45 uM m-2 s-2), and Total and Large Polysome RNA from both treatments were extracted and hybridized against Affymetrix genome chips. Values were used to evaluate changes in transcript abundance and transcript association with large polysomal complexes.

Publication Title

Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14538
Effect of mesalazine on Caco2 cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Several reports indicate that mesalazine (5-aminosalicylic acid or 5-ASA) is a promising candidate for the chemoprevention of Colo-Rectal Cancer (CRC) due to its ability to reach the purpose, yet avoiding at the same time the side effects that are usually determined by prolonged administrations of Non Steroidal Anti-Inflammatory Drugs. This activity of 5-ASA is probably the consequence of a number of effects determined on colon cancer cells and consisting of reduced proliferation, increased apoptosis and activation of cell cycle checkpoints. A recent observation has suggested that these effects could be mediated by the capacity of 5-ASA to interfere with the nuclear translocation of beta-catenin, in turn responsible for the inhibition of its transcription activity. The aim of our study was to better characterize the molecular mechanism by which 5-ASA inhibits the beta-catenin signaling pathway. To address this issue we assessed, by means of the Affymetrix microarray methodology, the transcriptome changes determined on Caco2 cells by a 96 h treatment with 20 mM mesalazine.

Publication Title

Mesalazine inhibits the beta-catenin signalling pathway acting through the upregulation of mu-protocadherin gene in colo-rectal cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact