refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 80 results
Sort by

Filters

Technology

Platform

accession-icon GSE28440
Gene expression from mouse white, brown, and perivascular adipose tissue
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually identical to BAT, with equally high expression of Ucp-1, Cidea and other genes known to be uniquely or very highly expressed in BAT. PVAT and BAT also displayed nearly identical phenotypes upon immunohistochemical analysis, and electron microscopy confirmed that PVAT contained multilocular lipid droplets and abundant mitochondria. Compared to white adipose tissue (WAT), PVAT and BAT from C57BL/6 mice fed a high fat diet for 13 weeks had markedly lower expression of immune cell-enriched mRNAs, suggesting resistance to obesity-induced inflammation. Indeed, staining of BAT and PVAT for macrophage markers (F4/80, CD68) in obese mice showed virtually no macrophage infiltration, and FACS analysis of BAT confirmed the presence of very few CD11b+/CD11c+ macrophages in BAT (1.0%) in comparison to WAT (31%). In summary, murine PVAT from the thoracic aorta is virtually identical to interscapular BAT, is resistant to diet-induced macrophage infiltration, and thus may play an important role in protecting the vascular bed from thermal and inflammatory stress.

Publication Title

Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE73385
Expression data fom human capillary network-derived cells before and after adipogenic differentation, and after chronic adenylate cyclase activation of differentiated cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Progenitors in human vasculature expanded in-vitro were differentiated with adipogenic cocktail for 12 days, following which they were stimulated with forskolin for 7 days

Publication Title

Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE63158
Gene expression and alternative splicing in pancreatic ductal adenocarcinoma (PDAC)
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st), Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE56560
Gene expression and alternative splicing in pancreatic ductal adenocarcinoma (PDAC) [gene level]
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Alternative splicing is a key event to human transcriptome and proteome diversity and complexity. Recent evidence suggests that pancreatic cancer might possess particular patterns of splice variation that influence the function of individual genes contributing to tumour progression in this disease. The identification of new pancreatic cancer-associated splice variants would offer opportunities for novel diagnostics and potentially also represent novel therapeutic targets.

Publication Title

A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE16131
Differences Between Follicular Lymphoma With and Without Translocation t(14;18)
  • organism-icon Homo sapiens
  • sample-icon 368 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Follicular lymphoma (FL) is genetically characterized by the presence of the t(14;18)(q32;q21) chromosomal translocation in approximately 90% of cases. In contrast to FL carrying the t(14;18), their t(14;18)-negative counterparts are less well studied regarding their immunohistochemical, genetic, molecular and clinical features. Within a previously published series of 184 FL grade 1-3A with available gene expression data, we identified 17 FL lacking the t(14;18). Comparative genomic hybridization and high resolution SNP array profiling demonstrated that gains/amplifications of the BCL2 gene locus in 18q were restricted to the t(14;18)-positive FL subgroup. A comparison of gene expression profiles revealed an enrichment of germinal center B-cell associated signatures in t(14;18)-positive FL, whereas activated B-cell like, NFB, proliferation and bystander cell signatures were enriched in t(14;18)-negative FL. These findings were confirmed by immunohistochemistry in an independent validation series of 84 FL, in which 32% of t(14;18)-negative FL showed weak or absent CD10 expression and 91% an increased Ki67 proliferation rate. Although overall survival did not differ between FL with and without t(14;18), our findings suggest distinct molecular features of t(14;18)-negative FL.

Publication Title

Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE81184
Genome-wide copy number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE81183
Genome-wide copy number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We studied 277 lymphoma samples (198 FL and 79 transformed FL [tFL]) using a single-nucleotide polymorphism array to identify the secondary chromosomal abnormalities that drive the development of FL and its transformation to diffuse large B-cell lymphoma. This dataset is corresponding Gene expression data that is available for a subset of the tFL cases for Series GSE67385.

Publication Title

Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15041
Postnatal developmental changes in Sprague-Dawley rats in the model of neuropathic pain 'spare nerve injury'
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Neuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus avulsion, which causes intense neuropathic pain in adults, is not painful when the injury is sustained at birth. Since infants are capable of nociception from before birth and display both acute and chronic inflammatory pain behaviour from an early neonatal age, it appears that the mechanisms underlying neuropathic pain are differentially regulated over a prolonged postnatal period.

Publication Title

Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77642
Expression data from WT and L-PGDS ko mice aorta
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarray data to look for gene differentially expressed in the aorta of WT and L-PGDS ko male mice.

Publication Title

Lipocalin-Like Prostaglandin D Synthase but Not Hemopoietic Prostaglandin D Synthase Deletion Causes Hypertension and Accelerates Thrombogenesis in Mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE47150
Microarray profiling of primary neurons transduced with shRNA for multiple ASD-implicated genes
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Austism spectrum disorder (ASD) is a heterogeneous behavioral disease most commonly characterized by severe impairment of social engagement and the presence of repetitive activities. The molecular etiology of ASD is still largely unknown despite a strong genetic component. Part of the difficulty in turning genetics into disease mechanisms and potentially new therapeutics is the sheer number and diversity of the genes that have been associated with ASD and ASD symptoms. The goal of this work is to use shRNA-generated models of genetic defects proposed as causative for ASD to identify the common pathways that might explain how they produce a common clinical outcome. Transcript levels of Mecp2, Mef2a, Mef2d, Fmr1, Nlgn1, Nlgn3, Pten, and Shank3 were knocked-down in mouse primary neuron cultures using shRNA/lentivirus constructs. Whole genome expression analysis was conducted for each of the knock-down cultures as well as a mock-transduced culture and a culture exposed to a lentivirus expressing luciferase. Gene set enrichment and a causal reasoning engine were employed to indentify pathway level perturbations generated by the transcript knock-down. Quantitation of the shRNA targets confirmed the successful knock-down at the transcript and protein levels of at least 75% for each of the genes. After subtracting out potential artifacts caused by transfection and viral infection, gene set enrichment and causal reasoning engine analysis showed that a significant number of gene expression changes mapped to pathways associated with neurogenesis, long-term potentiation, and synaptic activity. This work demonstrates that despite the complex genetic nature of ASD, there are common molecular mechanisms that connect many of the best established autism candidate genes. By identifying the key regulatory checkpoints in the interlinking transcriptional networks underlying autism, we are better able to discover the ideal points of intervention that provide the broadest efficacy across the diverse population of autism patients.

Publication Title

Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact