refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 150 results
Sort by

Filters

Technology

Platform

accession-icon SRP095488
Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of transcriptome of prostate tissue from the anterior lobe or tumor from 9, 12, 13, 14, and 16 months old mouse Prostate tissue or tumor from 9 month old Nkx3.1CreERT2/+ mice, 14 month old Nkx3.1CreERT2/+;Ptenflox/flox mice (intact, treated with vehicle), 16 month old Nkx3.1CreERT2/+;Ptenflox/flox mice (castrated, treated with vehicle or abiraterone), 12 month old Nkx3.1CreERT2/+;Ptenflox/flox;P53flox/flox mice(intact, treated with vehicle), 13 month old Nkx3.1CreERT2/+;Ptenflox/flox;P53flox/flox mice (castrated, treated with vehicle or abiraterone) was harvested, and snap frozen for subsequent molecular analysis Overall design: Total RNA obtained from prostate tissues or tumors. Prostate tissues or tumors were harvested and processed for RNA isolation and transcriptome analysis using the MagMAX RNA isolation kit (Ambion).

Publication Title

Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE37169
Oncogenic BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37132
Oncogenic BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Most cancer genomics papers to date have focused on aberrations in genomic DNA and protein-coding transcripts. However, around 50% of transcripts have no coding potential and may exist as non-coding RNA. We performed RNA-seq in BRAFv600e melanoma skin cancer and on melanocytes over-expressing oncogenic BRAF to catalog transcriptome remodeling. We discovered that BRAF regulates expression of 1027 protein coding transcripts, 39 annotated lncRNAs and 70 novel transcripts. Many of the novel transcripts are lncRNAs. We used an indepenedent dataset to interrogate our novel transcripts and found that the novel lncRNA BANCR is a BRAF-regulated lncRNA recurrently upregulated in melanoma. Knockdown of BANCR impairs melanoma cell migration.

Publication Title

BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE50686
Role of MITF in melanoma
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE50649
COLO829 treatment with PLX4032 and/or MITF knockdown
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Thousands of enhancers are characterized in the human genome, yet few have been shown important in cancer. Inhibiting oncokinases, such as EGFR, ALK, HER2, and BRAF, is a mainstay of current cancer therapy but is hindered by innate drug resistance mediated by upregulation of the HGF receptor, MET. The mechanisms mediating such genomic responses to targeted therapy are unknown. Here, we identify lineage-specific MET enhancers for multiple common tumor types, including a melanoma lineage-specific MET enhancer that displays inducible chromatin looping and MET gene induction upon BRAF inhibition. Epigenomic analysis demonstrated that the melanocyte-specific transcription factor, MITF, mediates this enhancer function. Targeted genomic deletion (<7bp) of the MITF motif within the MET enhancer suppressed inducible chromatin looping and innate drug resistance, while maintaining MITF-dependent, inhibitor-induced melanoma cell differentiation. Epigenomic analysis can thus guide functional disruption of regulatory DNA to decouple pro- and anti-oncogenic functions of tumor lineage-enriched transcription factors mediating innate resistance to oncokinase therapy.

Publication Title

Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE3330
Combined Expression Trait Correlations and Expression Quantitative Trait Locus Mapping
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Coordinated regulation of gene expression levels across a series of experimental conditions provides valuable information about the functions of correlated transcripts. To map gene regulatory pathways, we used microarray-derived gene expression measurements in 60 individuals of an F2 sample segregating for diabetes. We performed correlation analysis among ~40,000 expression traits. By combining correlation among expression traits and linkage mapping information, we were able to identify regulatory networks, make functional predictions to uncharacterized genes, and characterize novel members of known pathways. Using 36 seed traits, we found evidence of coordinate regulation of 160 G-protein coupled receptor (GPCR) pathway expression traits. Of the 160 traits, 50 had their major LOD peak within 8 cM of a locus on chromosome 2, and 81 others had a secondary peak in this region. A previously uncharacterized Riken cDNA clone, which showed strong correlation with stearoyl CoA desaturase 1 expression, was experimentally validated to be responsive to conditions that regulate lipid metabolism. Using linkage mapping, we identified multiple genes whose expression is under the control of transcription regulatory loci. Trait-correlation combined with linkage mapping can reveal regulatory networks that would otherwise be missed if we only studied mRNA traits with statistically significant linkages in this small cross. The combined analysis is more sensitive compared with linkage mapping only.

Publication Title

Combined expression trait correlations and expression quantitative trait locus mapping.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58161
Suppression of progenitor differentiation requires the long noncoding RNA ANCR
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE34767
Suppression of Progenitor Differentiation Requires the Long Non-Coding RNA ANCR
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34528
Suppression of Progenitor Differentiation Requires the Long Non-Coding RNA ANCR [HG-U133_Plus_2]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Long non-coding RNAs (lncRNAs) regulate diverse processes, yet a potential role for lncRNAs in maintaining the undifferentiated state in somatic tissue progenitor cells remains uncharacterized. We used transcriptome sequencing and tiling arrays to compare lncRNA expression in epidermal progenitor populations versus differentiating cells. We identified ANCR (anti differentiation ncRNA) as an 855 bp lncRNA down-regulated during differentiation. Depleting ANCR in progenitor-containing populations, without any other stimuli, led to rapid differentiation gene induction. In epidermis, ANCR loss abolished the normal exclusion of differentiation from the progenitor-containing compartment. The ANCR lncRNA is thus required to enforce the undifferentiated cell state within epidermis.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50822
Differential neuronal targeting of a new and 2 known calcium channel 4 subunit splice variants correlates with their regulation of gene expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The subunits of voltage-gated calcium channels regulate surface expression and gating of CaV1 and CaV2 1 subunits, and thus contribute to neuronal excitability, neurotransmitter release and calcium-induced gene regulation. In addition certain subunits are targeted into the nucleus, where they directly interact with the epigenetic machinery. Whereas their involvement in this multitude of functions is reflected by a great molecular heterogeneity of isoforms derived from four genes and abundant alternative splicing, little is known about the roles of individual variants in specific neuronal functions. In the present study, an alternatively spliced 4 subunit lacking the variable N-terminus (4e) is identified. It is highly expressed in mouse cerebellum and cultured cerebellar granule cells (CGC) and modulates P/Q-type calcium currents in tsA cells and CaV2.1 surface expression in neurons. Compared to the other two known full-length 4 variants (4a, 4b) 4e is most abundantly expressed in the distal axon, but lacks nuclear targeting properties. To examine the importance of nuclear targeting of 4 subunits for transcriptional regulation, we performed whole genome expression profiling of CGCs from lethargic mice individually reconstituted with 4a, 4b, and 4e. Notably, the number of genes regulated by each 4 splice variant correlated with the rank order of their nuclear targeting properties (4b> 4a> 4e). Together these findings support isoform-specific functions of 4 splice variant in neurons, with 4b playing a dual role in channel modulation and gene regulation, while the newly detected 4e variant serves exclusively in calcium channel-dependent functions.

Publication Title

Differential neuronal targeting of a new and two known calcium channel β4 subunit splice variants correlates with their regulation of gene expression.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact