refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 150 results
Sort by

Filters

Technology

Platform

accession-icon GSE19415
Expression data from primary ovine fetal turbinate cells infected with Orf Virus IA82 and deletion mutant OV-IA82024
  • organism-icon Ovis aries
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Reverse genetics has been widely used to investigate function of viral genes. In the present study we investigated the gene expression profile of a primary ovine cell (OFTu) in response to infection with the wild type (OV-IA82) and deletion mutant virus (OV-IA82024) aiming to determine possible functions for ORFV024 during ORFV infection.

Publication Title

A novel inhibitor of the NF-{kappa}B signaling pathway encoded by the parapoxvirus orf virus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP116018
Whole-organism clone-tracing using single-cell sequencing
  • organism-icon Danio rerio
  • sample-icon 160 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We present ScarTrace, a single-cell sequencing strategy that allows us to simultaneously quantify information on clonal history and cell type for thousands of single cells obtained from different organs from adult zebrafish. Using this approach we show that all blood cells types in the kidney marrow arise from a small set of multipotent embryonic. In contrast, we find that cells in the eyes, brain, and caudal tail fin arise from many embryonic progenitors, which are more restricted and produce specific cell types in the adult tissue. Next we use ScarTrace to explore when embryonic cells commit to forming either left or right organs using the eyes and brain as a model system. Lastly we monitor regeneration of the caudal tail fin and identify a subpopulation of resident macrophages that have a clonal origin that is distinct from other blood cell types. Overall design: Single cell sequencing data from cells isolated from zebrafish organs (whole kidney marrow, forebrain, hindbrain, left eye, right eye, left midbrain, right midbrain, and regenerated fin). For each cell, we provide libraries with transcritpome and with clonal information, respectively.

Publication Title

Whole-organism clone tracing using single-cell sequencing.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE37552
A Systems Biology Approach Reveals Common Metastatic Pathways in Osteosarcoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background

Publication Title

A systems biology approach reveals common metastatic pathways in osteosarcoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP174473
miR205 Regulates Mammary Gland Development and Stem Cell Self-renewal through YAP and Wnt signaling
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Mammary gland development is fueled by stem cell self-renewal and differentiation. External cues from the microenvironment coupled with internal cues such as post-transcriptional regulation exerted by miRNAs regulate stem cell behavior and stem cell fate. We have identified a miR205 regulatory network required for mammary gland morphogenesis and stem cell maintenance. In the postnatal mammary gland, miR205 is predominantly expressed in the basal/stem cell enriched population. Conditional deletion of miR205 in mammary epithelial cells severely impaired stem cell self-renewal and mammary repopulating potential both in vitro and in vivo. miR205 null glands displayed significant changes in the basal population, basement membrane and stroma. NKD1 and PP2A-B56, which inhibit the Wnt signaling pathway, and AMOT, which causes YAP cytoplasmic retention and inactivation were identified as miR205 downstream effectors. Collectively these findings reveal an essential role of miR205 in mammary gland development. Overall design: WT;RosamTmG/mTmG and miR-205fl/fl;RosamTmG/mTmG cells were treated with Ad-cre and transplanted back to 3-wk-old SCID-Beige mice. Mammary epithelial cell (MECs) were isolated from pooled 40 WT;RosamTmG/mTmG cre+ and miR-205fl/fl;RosamTmG/mTmG cre+ outgrowths after 8 weeks. GFP+ basal cells (CD24+CD49fhigh) were further sorted from MECs of each group and RNA-seq were performed on WT and miR205fl/fl cre+ green basal cells to look for differentially expressed genes.

Publication Title

miR-205 Regulates Basal Cell Identity and Stem Cell Regenerative Potential During Mammary Reconstitution.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE30859
Multilineage Priming of Enhancer Repertoires Precedes Commitment to the B and Myeloid Cell Lineages in Hematopoietic Progenitors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recent studies have documented genome-wide binding patterns of transcriptional regulators and their associated epigenetic marks in hematopoietic cell lineages. In order to determine how epigenetic marks are established and maintained during developmental progression, we have generated long-term cultures of hematopoietic progenitors by enforcing the expression of the E-protein antagonist Id2. Hematopoietic progenitors that express Id2 are multipotent and readily differentiate upon withdrawal of Id2 expression into committed B lineage cells, thus indicating a causative role for E2A (Tcf3) in promoting the B cell fate. Genome-wide analyses revealed that a substantial fraction of lymphoid and myeloid enhancers are premarked by the poised or active enhancer mark H3K4me1 in multipotent progenitors. Thus, in hematopoietic progenitors, multilineage priming of enhancer elements precedes commitment to the lymphoid or myeloid cell lineages.

Publication Title

Multilineage priming of enhancer repertoires precedes commitment to the B and myeloid cell lineages in hematopoietic progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107497
Genomic analysis for hematopoietic stem and progenitors cells (HSPC) generated in vitro according to ex vivo expansion protocols and their comparison with HSPC obtained fresh
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Expansion for hematopoietic cells from umbilical cord blood is a strategy for use this cell source in clinic transplants, however, it is important to know about the genomic changes that can occur in expanded cells. In order to detect global expression profiles changes in hematopoietic stem and progenitors cells generated in vitro, we analyzed hematopoietics populations obtained by FACS in fresh from umbilical cord blood. HSC (fHSC) was defined as CD34+ CD38- CD71- CD45RA- Lin- and were cocultured with stromal cell line OP-9 plus FL, SCF, IL3, IL6, TPO, GMCSF and G-CSF by 7 days, after time we repurified HSC population by FACS using same immunophenotype (ivHSC). In other hand, fresh erythroid progenitors cells (fEPC) were identified as CD34+CD38+CD71+CD45RA- Lin- and fresh myeloid progenitors cells (fMPC) were identified as CD34+CD38+CD71-CD45RA+Lin-. In vitro progenitors cells (ivEPC and ivMPC) were obtained by culturing fHSC in Stemspan serum-free media plus SCF, TPO, IL6, FL and IL3 by 10 days, after time cells were repurified by FACS using same immunophenotype for fresh progenitors. In vitro generated cells were compared with their corresponding fresh population cells.

Publication Title

Functional Integrity and Gene Expression Profiles of Human Cord Blood-Derived Hematopoietic Stem and Progenitor Cells Generated In Vitro.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30855
Establishment of Enhancer Repertoires that Orchestrate the Myeloid and Lymphoid Cell Fates (gene expression dataset 1)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recent studies have documented genome-wide binding patterns of transcriptional regulators and their associated epigenetic marks in hematopoietic cell lineages. In order to determine how epigenetic marks are established and maintained during developmental progression, we have generated long-term cultures of hematopoietic progenitors by enforcing the expression of the E-protein antagonist Id2. Hematopoietic progenitors that express Id2 are multipotent and readily differentiate upon withdrawal of Id2 expression into committed B lineage cells, thus indicating a causative role for E2A in promoting the B cell fate. Genome-wide analyses revealed that a substantial fraction of lymphoid and myeloid enhancers are pre-marked by H3K4me1 in multipotent progenitors. However, H3K4me1 levels at a subset of enhancers are elevated during developmental progression, resulting in evolving enhancer repertoires that we propose orchestrate the myeloid and B cell fates.

Publication Title

Multilineage priming of enhancer repertoires precedes commitment to the B and myeloid cell lineages in hematopoietic progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74874
Whole-genome effects of elaidic and oleic acids
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Trans fatty acids (tFAs) may have deleterious, long-term transcriptional effects. To explore that issue, we assessed the effects of the tFA elaidic acid and its cis isomer oleic acid on transcription and, in parallel, on DNA methylation.

Publication Title

The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP174935
lncRNA-PCAT1 knockdown effect on the gene expression of androgen independent LNCaP (LNCaP-AI) cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We generated and characterized an androgen-independent LNCaP-AI cell line by long-term culture of androgen-dependent LNCaP cells in RPMI-1640 medium containing charcoal-stripped serum. This approach used to generate the line mimics the castration resistant condition for treating prostate cancer, supporting the relevance of the LNCAP-AI cell line to Castration Resistant Prostate Cancer. Overall design: LNCaP-AI cells transfected with lncRNA PCAT1 shRNA and the scramble shRNA were used for the RNA-seq.

Publication Title

LncRNA PCAT1 activates AKT and NF-κB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKα complex.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP135978
Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We sought to determine whether Ldh activity in SCC tumors is a marker of the cell type from which these cells arise, or a key metabolic activity important for tumor initiation or progression. Here we show that genetic abrogation of Ldh enzyme activity in HFSC-mediated tumorigenesis had no effect on tumor number, time to tumor formation, tumor proliferation, epithelial to mesenchymal transition in tumors, gene expression in tumors, tumor pathology, or the immune response to tumors. Overall design: Examination of mRNA profile of five LDHA knockout mice vs five wild type (WT) mice using Illumina HiSeq2500.

Publication Title

Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact