refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 48 results
Sort by

Filters

Technology

Platform

accession-icon GSE51912
Whole transcriptome analysis of laser capture microdissected tissues reveals site-specific programming of the host epithelial transcriptome by the gut microbiota
  • organism-icon Mus musculus
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Site-specific programming of the host epithelial transcriptome by the gut microbiota.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP058534
ELAVL2-regulated transcriptional networks in human neurons link atlernative splicing, autism and human neocortical evolution
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The role of post-transcriptional gene regulation in human brain development and cognitive diseases remains mostly uncharacterized. ELAV-like RNA binding proteins are a family of proteins that regulate several aspects of neuronal function including neuronal excitability and synaptic transmission. Here, we identify the downstream transcriptional networks of ELAVL2, an RNA-binding protein with unknown function in the brain. We knockdown expression of ELAVL2 in human neurons and conduct RNA-sequencing, identifying networks of differentially expressed and alternatively spliced genes with altered ELAVL2. These networks contain autism-relevant genes as well as previously identified targets of other RNA binding proteins implicated in autism spectrum disorders such as RBFOX1 and FMRP. ELAVL2-regulated coexpression networks are also enriched for synaptic genes as well as genes with human-specific patterns of gene expression in the frontal pole. Together, these data suggest that ELAVL2 regulation of transcript expression is critical for neuronal functions at risk in autism spectrum disorders and such mechanisms of post-transcriptional gene regulation may have contributed to human brain evolution. Overall design: We carried out RNA-sequencing (RNA-seq) of human neural progenitors cells. For the RNA-seq, 5 indipendent replicates were used for the neural progenitor cells. Primary human neural progenitor cultures were derived from mid-gestation fetal brain. Cells were transduced with a lentivirus containing a specific shRNA to ELAVL2 or a control shRNA. Cells were differentiated into neurons for 4 weeks and then harvested.

Publication Title

ELAVL2-regulated transcriptional and splicing networks in human neurons link neurodevelopment and autism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066177
Differential expression of RNAs in E9 tuft rostrums with NTDs
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Purpose: Identify genes and pathways affected in tuft embryos with NTDs Results: Expression of genes associated with neural tube closure and components of non-canonical WNT signaling/PCP pathways were affected Conclusions: TET1 regulates genes associated with neural tube closure Overall design: RNA pooled from the rostrums of E9 (18-22 somites) tuft/tuft embryos with NTD compared with respective wildtype background strain

Publication Title

A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP011903
RBFOX1 Splicing and Transcriptional Regulation in Neurons
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We used RNA sequencing to identify the RBFOX1 splicing network at a genome-wide level in primary human neural stem cells during differentiation. We observe that RBFOX1 regulates a large set of alternative splicing events implicated in neurogenesis and cell maintenance. Subsequent alterations in gene expression define an additional transcriptional network regulated by RBFOX1 involved in neurodevelopmental pathways remarkably parallel to those affected by splicing. Overall design: RNA sequencing at a 75bp single-end read scale was performed using polyA-enriched RNA from 5 biological replicates of primary human neural progenitor cell lines generated by lentiviral-mediated knockdown of GFP (control) or RBFOX1 and differentiated for 4 weeks.

Publication Title

RBFOX1 regulates both splicing and transcriptional networks in human neuronal development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP187300
Disruption of the exocyst induces podocyte loss and dysfunction
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In this study we plan to compare the profiles of control sample (cultured podocytes) with the Exoc5 knock down in cutured podocytes to examine the differentially expressed genes. Overall design: We hope to identify the genes that are downregulated on knocking down Exoc5 in cultured human podocytes cells

Publication Title

Disruption of the exocyst induces podocyte loss and dysfunction.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE61400
Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE61324
Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2 [04_Cerebellun_and_brain]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.

Publication Title

Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP075685
Genome-wide maps of histone variant H3.3 occupancy in zebrafish cardiomyocytes [RNA]
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq4000

Description

We report high-throughput profiling of gene expression from whole zebrafish ventricles. We profile mRNA in uninjured ventricles and those undergoing regeneration 14 days after genetic ablation. This study provides a framework for understanding transcriptional changes during adult models of regeneration. Overall design: Examination of gene expression in cardiomyocytes under different states of proliferation.

Publication Title

Resolving Heart Regeneration by Replacement Histone Profiling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11675
Chronic myelogenous leukemia hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

We show the molecular and functional characterization of a novel population of lineage-negative CD34-negative (Lin- CD34-) hematopoietic stem cells (HSCs) from chronic myelogenous leukemia (CML) patients at diagnosis. Molecular caryotyping and quantitative analysis of BCR/ABL transcript demonstrated that about one third of CD34- was leukemic. CML CD34- cells showed kinetic quiescence and limited clonogenic capacity. However, stroma-dependent cultures and cytokines induced CD34 expression on some HSCs, cell cycling, acquisition of clonogenic activity and increased expression of BCR/ABL transcript. CML CD34- cells showed an engraftment rate in immunodeficient mice similar to that of CD34+ cells. Gene expression profiling revealed the down-regulation of cell cycle arrest genes together with genes involved in antigen presentation and processing, while the expression of angiogenic factors was strongly up-regulated when compared to normal counterparts. Flow cytometry analysis confirmed the significant down-regulation of HLA class I and II molecules in CML CD34-cells. Increasing doses of imatinib mesilate (IM) did not affect fusion transcript levels, BCR-ABL kinase activity and the clonogenic efficiency of CML CD34- cells as compared to leukemic CD34+cells.

Publication Title

Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE116436
Drug-induced change in gene expression across NCI-60 cell lines after exposure to 15 anticancer agents for 2, 6 and 24h
  • organism-icon Homo sapiens
  • sample-icon 6633 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2), Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

To identify patterns of drug-induced gene modulation that occur across different cell types, we measured gene expression changes across NCI-60 cell lines after exposure to 15 anticancer agents. The results were integrated into a database and set of interactive analysis tools, the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), intended to allow exploration of gene expression modulation, including by molecular pathway, drug target, and association with drug sensitivity. We identified common transcriptional responses across drugs and cell types and uncovered cell signaling pathway–specific gene expression changes associated with drug sensitivity. We also demonstrated the value of this tool for investigating clinically relevant molecular hypotheses, utilizing the NCI TPW to assess drug-induced expression changes in genes associated with immune function and epithelial-mesenchymal transition, and to identify candidate biomarkers for drug activity. The NCI TPW provides a comprehensive resource to facilitate understanding of tumor cell characteristics that define sensitivity to anticancer drugs.

Publication Title

The NCI Transcriptional Pharmacodynamics Workbench: A Tool to Examine Dynamic Expression Profiling of Therapeutic Response in the NCI-60 Cell Line Panel.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact