refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 157 results
Sort by

Filters

Technology

Platform

accession-icon GSE85113
Expression data from three rice lines (1-control, 1-transgenic and 1-negative segregant) throughout generations and under salt stress
  • organism-icon Oryza sativa
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice (US) Gene 1.0 ST Array (rusgene11st)

Description

The approval of genetically modified (GM) crops is preceded by years of intensive research to demonstrate safety to humans and environment. We recently showed that in vitro culture stress is the major factor influencing proteomic differences of GM vs. non-GM plants. This made us question the number of generations needed to erase such memory. We also wondered about the relevance of alterations promoted by transgenesis as compared to environment-induced ones.

Publication Title

Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40636
PGN induced transcriptional changes in human neonatal neutrophils
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have employed whole genome microarray expression profiling to identify genes differentially expressed in cord blood purified neutrophils after a short-term exposure to peptidoglycan (PGN).

Publication Title

Expression profile of cord blood neutrophils and dysregulation of HSPA1A and OLR1 upon challenge by bacterial peptidoglycan.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE20126
Transcriptome analysis of human Whartons jelly stem cells
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.

Publication Title

Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13314
Gene expression profiling of pulmonary MALT lymphoma
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Molecular pathways activated in MALT lymphoma are not well defined.

Publication Title

Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE34908
Genetic and epigenetic determinants of neurogenesis and myogenesis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetic and epigenetic determinants of neurogenesis and myogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20124
Transcriptome analysis of human Whartons jelly stem cells: in-house analysis
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.

Publication Title

Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34907
Genetic and epigenetic determinants of neurogenesis and myogenesis [expression profiling]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The regulatory networks of differentiation programs have been partly characterized; however, the molecular mechanisms of lineage-specific gene regulation by highly similar transcription factors remain largely unknown. Here we compare the genome-wide binding and transcription profiles of NEUROD2-mediated neurogenesis with MYOD-mediated myogenesis. We demonstrate that NEUROD2 and MYOD bind a shared CAGCTG E-box motif and E-box motifs specific for each factor: CAGGTG for MYOD and CAGATG for NEUROD2. Binding at factor-specific motifs is associated with gene transcription, whereas binding at shared sites is associated with regional epigenetic modifications but not as strongly associated with gene transcription. Binding is largely constrained to E-boxes pre-set in an accessible chromatin context that determines the set of target genes activated in each cell type. These findings demonstrate that the differentiation program is genetically determined by E-box sequence whereas cell lineage epigenetically determines the availability of E-boxes for each differentiation program.

Publication Title

Genetic and epigenetic determinants of neurogenesis and myogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34047
SA, elf18 treatment of WT and tbf1 mutant
  • organism-icon Arabidopsis thaliana
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Identification of TBF1-dependent and SA, elf18-responsive genes in Arabidopsis

Publication Title

The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE20125
Transcriptome analysis of human Whartons jelly stem cells: meta-analysis
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.

Publication Title

Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE148325
Expression data for C. elegans blunt force trauma
  • organism-icon Caenorhabditis elegans
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

C. elegans exhibit an age-dependent mechanical stress response to blunt force injury.

Publication Title

Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact