refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 62 results
Sort by

Filters

Technology

Platform

accession-icon GSE9038
Gene expression profiles of striatum and cerebellum from knock-in mouse model of Huntington's disease
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Huntingtons disease (HD) involves marked early neurodegeneration in the striatum whereas the cerebellum is relatively spared despite the ubiquitous expression of full-length mutant huntingtin, implying that inherent tissue-specific differences determine susceptibility to the HD CAG mutation. To understand this tissue specificity, we compared early mutant huntingtin-induced gene expression changes in striatum to those in cerebellum in young Hdh CAG knock-in mice, prior to onset of evident pathological alterations. Endogenous levels of full-length mutant huntingtin caused qualitatively similar, but quantitatively different gene expression changes in the two brain regions. Importantly, the quantitatively different responses in striatum and cerebellum in mutant mice were well accounted for by the intrinsic molecular differences in gene expression between striatum and cerebellum in wild-type animals. Tissue-specific gene expression changes in response to the HD mutation, therefore, appear to reflect the different inherent capacities of these tissues to buffer qualitatively similar effects of mutant huntingtin. These findings highlight a role for intrinsic quantitative tissue differences in contributing to HD pathogenesis, and likely to other neurodegenerative disorders exhibiting tissue-specificity, thereby guiding the search for effective therapeutic interventions.

Publication Title

Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34721
Continuous analysis captures cellular states that reflect dominant effects of the HTT CAG repeat in human lymphoblastoid cell lines.
  • organism-icon Homo sapiens
  • sample-icon 221 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In Huntingtons disease (HD), expanded HTT CAG repeat length correlates strongly with age at motor onset, indicating that it determines the rate of the disease process leading to diagnostic clinical manifestations. Similarly, in normal individuals, HTT CAG repeat length is correlated with biochemical differences that reveal it as a functional polymorphism. Here, we tested the hypothesis that gene expression signatures can capture continuous, length-dependent effects of the HTT CAG repeat. Using gene expression datasets for 107 HD and control lymphoblastoid cell lines, we constructed mathematical models in an iterative manner, based upon CAG correlated gene expression patterns in randomly chosen training samples, and tested their predictive power in test samples. Predicted CAG repeat lengths were significantly correlated with experimentally determined CAG repeat lengths, whereas models based upon randomly permuted CAGs were not at all predictive. Predictions from different batches of mRNA for the same cell lines were significantly correlated, implying that CAG length-correlated gene expression is reproducible. Notably, HTT expression was not itself correlated with HTT CAG repeat length. Taken together, these findings confirm the concept of a gene expression signature representing the continuous effect of HTT CAG length and not primarily dependent on the level of huntingtin expression. Such global and unbiased approaches, applied to additional cell types and tissues, may facilitate the discovery of therapies for HD by providing a comprehensive view of molecular changes triggered by HTT CAG repeat length for use in screening for and testing compounds that reverse effects of the HTT CAG expansion.

Publication Title

Dominant effects of the Huntington's disease HTT CAG repeat length are captured in gene-expression data sets by a continuous analysis mathematical modeling strategy.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE69346
An immediate transcriptional signature predicts response to the histone deacetylase inhibitor Givinostat in T acute lymphoblastic leukemia xenografts
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis of three sets of patient-derived T-ALL xenografted murine lines treated or not treated with Givinostat, to investigate the immediate anti-leukemic effects after 6 hours of in vivo treatment with this histone deacetylase inhibitor.

Publication Title

An immediate transcriptional signature associated with response to the histone deacetylase inhibitor Givinostat in T acute lymphoblastic leukemia xenografts.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE36453
Identification of endoderm-specific genes in mouse embryos
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The foregut definitive endoderm is the precursor of many tissues including the liver, pancreas, thyroid, lungs, trachea and oesophagus. However, networks and pathways involved in the early development of the definitive endoderm of mammals are not well studied. To identify genes with potential roles in the early development of the foregut definitive endoderm in mouse embryos, we performed microarray analysis to compare the gene expression profile of foregut endoderm and non-endodermal tissues from early somite-stage mouse embryos.

Publication Title

Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE117761
A gene regulatory network driven by LIM homeobox 1 (LHX1) for embryonic head development
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip, Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP155471
A gene regulatory network driven by LIM homeobox 1 (LHX1) for embryonic head development (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Development of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head. Overall design: Total RNA obtained from FLAG-Lhx1 and FLAG-Lhx1 mutant embryoid bodies differentiated over 2 days with or without doxycycline treatment for 16 hours. There are three replicates per condition.

Publication Title

A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE117760
A gene regulatory network driven by LIM homeobox 1 (LHX1) for embryonic head development (Microarray)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Development of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head.

Publication Title

A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36306
Expression data of muscle and draining lymph node after intramuscular ISCOM-Matrix vaccine adjuvant treatment
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

ISCOM vaccines induce a balanced Th1/Th2 response and cytotoxic T lymphocytes. The adjuvant component, ISCOM-Matrix, consists of purified saponin fractions, cholesterol and phospholipids. The mode of action for the ISCOM-Matrix is known to some extent but still we lack knowledge of important segments in initiation of the immune response. The study was performed to analyze the early transcriptional responses to the ISCOM-Matrix alone, without the use of co-administered antigen. Matrix M (AbISCO 100) was given as intramuscular injection and after 24 hours the pigs was sacrificed for gene expression analysis, performed for the injection site and the draining lymph node.

Publication Title

Global transcriptional response to ISCOM-Matrix adjuvant at the site of administration and in the draining lymph node early after intramuscular injection in pigs.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon SRP131980
Induction of Myelinating Oligodendrocytes in Human Cortical Spheroids
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Organoid technologies provide an accessible system in which to examine the generation, self-organization,and 3-dimensional cellular interactions during development of the human cerebral cortex. However, oligodendrocytes, the myelinating glia of the central nervous system and third major neural cell type, are conspicuously absent from current protocols. Here we reproducibly generate human oligodendrocytes and myelin in pluripotent stem cell-derived cortical spheroids. Transcriptional and immunohistochemical analysis of the spheroids demonstrates molecular features consistent with maturing human oligodendrocytes within 14 weeks of culture, including expression of MyRF, PLP1, and MBP proteins. Histological analysis by electron microscopy shows initial wrapping of human neuronal axons with myelin by 20 weeks and maturation to compact myelin by 30 weeks in culture. Treatment of spheroids with previously identified promyelinating drugs enhances the rate and extent of human oligodendrocyte generation and myelination. Furthermore, generation of spheroids from patients with a severe genetic myelin disorder, Pelizaeus-Merzbacher disease, demonstrates the ability to recapitulate human disease phenotypes, which were in turn improved with both pharmacologic and CRISPR-based approaches. Collectively, these 3-dimensional, multi-lineage cortical spheroids provide a versatile platform to observe and perturb the complex cellular interactions   that occur during developmental myelination of the brain and offer new opportunities for disease modeling and therapeutic development in human tissue. Overall design: RNAseq profiles comparing neuro-cortical spheroids and oligo-cortical spheroids

Publication Title

Induction of myelinating oligodendrocytes in human cortical spheroids.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14786
Gene expression analysis of cancer-related fatigue in whole blood from breast cancer survivors
  • organism-icon Homo sapiens
  • sample-icon 319 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Cancer-related fatigue is one of the most frequent complaints among breast cancer survivors, with a major negative impact on general life. However, the etiology behind this syndrome is still unraveled. Gene expression analysis was performed on whole blood samples from breast cancer survivors classified as either fatigued or non-fatigued at two consecutive time points. The analysis identified several gene sets concerning plasma and B cell pathways as different between the fatigue and non-fatigue groups, suggesting that a deregulation in these pathways might underlie the fatigue syndrome. The fatigue group also showed a higher mean level of leucocytes, lymphocytes and neutrophiles compared with the non-fatigue group, thus further implicating the immune system in the biology behind the fatigue syndrome.

Publication Title

Alterations of gene expression in blood cells associated with chronic fatigue in breast cancer survivors.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact