refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 527 results
Sort by

Filters

Technology

Platform

accession-icon GSE29072
Zebularine effect on mouse embryonic stem cells manifested as cardiod-myogenic potential: testable hypothesis generation using microarray data
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lineage commitment during Embryonic Stem Cells (ESCs) differentiation is controlled not only by a gamut of transcription factors but also by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Moreover, the DNA demethylation agent 5-Aza-2-deoxycytidine (AzadC) has been widely described in the literature as an effective chemical stimulus used to promote cardiomyogenic differentiation in various stem cell types; however, its toxicity and instability complicate its use. Thus, the purpose of this study was to examine the effects of zebularine, a stable and non-toxic DNA cytosine methylation inhibitor, on ESCs differentiation. Herein are the Affymetrix Expression data obtained from RNA of murine ESCs treated with zebularine.

Publication Title

Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE41799
Transcriptional profiling of human cancer cell lines upon ZMPSTE24 silencing
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Defining the aging-cancer relationship is a challenging task. Mice deficient in Zmpste24, a metalloproteinase mutated in human progeria and involved in nuclear prelamin A maturation, recapitulate many features of aging. However, their short lifespan and cell-intrinsic and -extrinsic alterations restrict the application and interpretation of carcinogenesis protocols. To circumvent these limitations we have generated Zmpste24 mosaic mice. Interestingly, these mice develop normally - revealing cell-extrinsic mechanisms are preeminent in progeria- and display decreased incidence of infiltrating oral carcinomas. Moreover, ZMPSTE24 knock-down reduces human cancer cell invasiveness. Our results disclose the ZMPSTE24-prelamin A system as an example of antagonistic pleiotropy on cancer and aging, support the potential of cell-based and systemic therapies for progeria, and highlight ZMPSTE24 as a new anticancer target.

Publication Title

Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP170672
Genes induced by senescence in soybean
  • organism-icon Glycine max
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Comparison between two vegetative stages of the soybean cultivar BR16: 20 and 80 days after germination (DAG) Overall design: Examination of 2 vegetative stages: 20 and 80 DAGs

Publication Title

Revisiting the Soybean GmNAC Superfamily.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE45702
DNA methylation status of myelinating Schwann cells during development and in diabetic neuropathy
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

S-adenosylmethionine levels regulate the schwann cell DNA methylome.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE45700
DNA methylation status of myelinating Schwann cells during development and in diabetic neuropathy [Gene Expression Array: C57Bl6J mice]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

DNA methylation is a key epigenetic regulator of mammalian embryogenesis and somatic cell differentiation. Using high-resolution genome-scale maps of methylation patterns, we show that the formation of myelin in the peripheral nervous system, proceeds with progressive DNA demethylation, which coincides with an upregulation of critical genes of the myelination process. More importantly, we found that, in addition to expression of DNA methyltransferases and demethylases, the levels of S-adenosylmethionine (SAMe), the principal biological methyl donor, could also play a critical role in regulating DNA methylation during myelination and in the pathogenesis of diabetic neuropathy. In summary, this study provides compelling evidence that SAMe levels need to be tightly controlled to prevent aberrant DNA methylation patterns, and together with recently published studies on the influence of SAMe on histone methylation in cancer and embryonic stem cell differentiation show that in diverse biological processes, the methylome, and consequently gene expression patterns, are critically dependent on levels of SAMe.

Publication Title

S-adenosylmethionine levels regulate the schwann cell DNA methylome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38618
Relevance of Chromosome 2p Gain in Early Binet Stage A Chronic Lymphocytic Leukemia
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chromosome 2p gain in monoclonal B-cell lymphocytosis and in early stage chronic lymphocytic leukemia.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
accession-icon GSE38611
Relevance of Chromosome 2p Gain in Early Binet Stage A Chronic Lymphocytic Leukemia (expression)
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp)

Description

Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease characterized by chromosomal aberrations of prognostic significance. Recent studies showed that gain of chromosome 2p is a recurrent lesion in CLL. We investigated the 2p gain and its relationship with prognostic biomarkers in a prospective series of 287 early-stage CLLs (Binet A). The 2p gain was detected by FISH in 17 patients (6%) and further characterized by single nucleotide polymorphism-array. Overall, unfavorable cytogenetic deletions, i.e. del(11)(q23) and del(17)(p13) (P=0.002) as well as unmutated (UM) status of IGHV (P<110-4) and CD38 (P<110-4) and ZAP-70 positive expression (P=0.003) were significantly more prevalent in 2p gain cases. Furthermore, 2p gained patients showed a significantly higher occurrence of stereotyped HCDR3 sequences compared to 2p normal CLLs (P=0.009). Among the stereotyped subsets, the incidence of subset #1 in 2p positive patients was significantly higher than that found in the remaining CLLs (P=0.031). Finally, gene expression profiling analysis identified a number of genes significantly upregulated in 2p gain CLLs. Among those located at 2p, NCOA1 and ROCK2 are known for their involvement in tumor progression in several human cancers, whereas among those located in different chromosomes, CAV1 at 7q31.1 has been recently identified to play a critical role in CLL progression. Our study indicates that 2p gain is a recurrent lesion in early CLL, correlated with the major biological and cytogenetic risk markers of the disease. Moreover, we provide insights to define novel candidate genes that may play additional pathogenetic roles in CLL.

Publication Title

Chromosome 2p gain in monoclonal B-cell lymphocytosis and in early stage chronic lymphocytic leukemia.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
accession-icon GSE72490
Differential expression analysis between Microadenoma and Macroadenoma in Cushing's Disease
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

ACTH-dependent hypercortisolism caused by a pituitary adenoma [Cushings disease (CD)] is the most common cause of endogenous Cushings syndrome. CD is often associated with several morbidities, including hypertension, diabetes, osteoporosis/bone fractures, secondary infections, and increased cardiovascular mortality. While the majority (80%) of the corticotrophinomas visible on pituitary magnetic resonance imaging are microadenomas (MICs, <10 mm of diameter), some tumors are macroadenomas (MACs, 10 mm) with increased growth potential and invasiveness, exceptionally exhibiting malignant demeanor. In addition, larger and invasive MACs are associated with a significant increased risk of local complications, such as hypopituitarism and visual defects. Given the clinical and molecular heterogeneity of corticotrophinomas, the aim of this study was to investigate the pattern of genetic differential expression between MIC and MAC, including the invasiveness grade as a criterion for categorizing these tumors. In this study, were included tumor samples from patients with clinical, laboratorial, radiological, and histopathological diagnosis of hypercortisolism due to an ACTH-producing pituitary adenoma. Differential gene expression was studied using an Affymetrix microarray platform in 12 corticotrophinomas, classified as non-invasive MIC (n = 4) and MAC (n = 5), and invasive MAC (n = 3), according to modified Hardy criteria. Somatic mutations in USP8 were also investigated, but none of the patients exhibited USP8 variants. Differential expression analysis demonstrated that non-invasive MIC and MAC have a similar genetic signature, while invasive MACs exhibited a differential expression profile. Among the genes differentially expressed, we highlighted CCND2, ZNF676, DAPK1, and TIMP2, and their differential expression was validated through quantitative real-time PCR in another cohort of 15 non-invasive and 3 invasive cortocotrophinomas. We also identified potential biological pathways associated with growth and invasiveness, TGF- and G protein signaling pathways, DNA damage response pathway, and pathways associated with focal adhesion. Our study revealed a differential pattern of genetic signature in a subgroup of MAC, supporting a genetic influence on corticotrophinomas in patients with CD.

Publication Title

Transcriptome Analysis Showed a Differential Signature between Invasive and Non-invasive Corticotrophinomas.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE26869
Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin.
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Analysis of the transcriptome of mononuclear side population (SP) and main population (MP) cells of human fetal skeletal muscle from 12 human subjects of gestational age 14-18 weeks.

Publication Title

Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38290
Functional analysis of ABCB5 in melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Functional analysis of ABCB5 in A375 and G3361 melanoma cells, by comparing stably-transfected controls to ABCB5-shRNA-targeted cells.

Publication Title

ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact