refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 116 results
Sort by

Filters

Technology

Platform

accession-icon SRP125403
Global transcriptional responses to KI-MS2-008 treatment and Myc inactivation via doxycycline addition
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The Myc/Max heterodimer has crucial roles in normal cellular processes such as cell proliferation, metabolism, apoptosis, and differentiation, but its activity is often deregulated in a majority of human cancers. In an effort to explore alternative modes of Myc perturbation, we identified KI-MS2-008 as a small molecule that binds Max and modulates Myc-driven transcription, and in some cellular contexts, KI-MS2-008 treatment leads to a decrease in c-Myc protein levels. As the Myc/Max heterodimer controls many cellular processes, we expected that treatment with this small molecule would cause changes in the transcriptome. We found that treatment with 10 µM KI-MS2-008 resulted in global alterations in the transcriptome, mimicking direct Myc inactivation with doxycycline in P493-6, a B cell line with a Tet-Off system for c-Myc expression. We also discovered enrichment of various Myc target gene sets in the genes downregulated in response to KI-MS2-008 treatment in P493-6 cells. This trend was also observed in ST486 cells, but not in P3HR1 cells, which were chosen as non-engineered B cell lines that were sensitive and insensitive, respectively, toward KI-MS2-008 in cell viability assays. Overall design: RNA-seq characterizing three B cell lines: P493-6 (an engineered, KI-MS2-008 sensitive cell line), ST486 (a non-engineered, KI-MS2-008 sensitive cell line), and P3HR1 (a non-engineered, KI-MS2-008 insensitive cell line). P493-6 cells were treated with 0.1 µg/mL doxycycline, 1 µM KI-MS2-008, 10 µM KI-MS2-008, or 0.4% DMSO for 45 minutes or 8 hours. ST486 cells were treated with 1 µM KI-MS2-008, 10 µM KI-MS2-008 or 0.4% DMSO for 45 minutes or 8 hours. P3HR1 cells were treated with 10 µM KI-MS2-008 or 0.4% DMSO for 8 hours. 4 replicates were performed for each condition.

Publication Title

Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon GSE4671
Microarray Analysis of the Delipidation of White Adipose Tissue of Mice Fed Conjugated Linoleic Acid
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The white adipose tissue (WAT) rapidly loses mass when mice are fed a diet containing trans-10, cis-12 conjugated linoleic acid (t10c12 CLA). A microarray analysis of WAT due to CLA feeding was performed to better define the processes and genes involved. WAT weight decreased by ca. 80% over 17 days of feeding a 0.5% t10c12 CLA diet. The lipid volume decreased by 90% and the number of adipocytes and total cells were reduced by15% and 47%, respectively. Microarray profiling of replicated pools of control and treated mice (n=140) at seven time points over the 17day feeding indicated between 2798 to 4318 genes showed mRNA changes of 2-fold or more. Transcript levels for genes of glucose and fatty acid import or biosynthesis were significantly reduced. A prolific inflammation response was indicated by the 2 to100-fold induction of many cytokine transcripts, including those for IL-6, IL1?, TNF ligands, and CXC family members

Publication Title

Trans-10, cis-12 conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice: a microarray and histological analysis.

Sample Metadata Fields

Age

View Samples
accession-icon GSE14888
Conjugated linoleic acid activates AMPK and reduces adiposity more effectively when used with metformin
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) causes dramatic reductions in white adipose tissue in mice but has had limited effectiveness in humans. Determination of the signaling pathways involved may lead to better regulation of adiposity. T10c12 CLA was found to activate AMP-activating protein kinase (AMPK), a central regulator of cell metabolism. Compound C, a potent inhibitor of AMPK, prevents many of the typical responses to treatments with t10c12 CLA including the integrated stress response (ISR), the inflammatory response, the reduction in key lipogenic transcription factors, and delipidation. Treatment of adipocytes or mice with t10c12 CLA in conjunction with AMPK activator metformin results in more delipidation than treatment with the individual chemicals. Additionally, the combination showed a reduced inflammatory response relative to a t10c12 CLA treatment alone. The combination of t10c12 CLA and metformin, widely used to treat insulin resistance and Type II diabetes, has potential as a treatment for reducing adiposity in humans.

Publication Title

Conjugated linoleic acid activates AMP-activated protein kinase and reduces adiposity more effectively when used with metformin in mice.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE44327
The hypoxia-inducible transcription factor ZNF395 is controlled by I-kappaB kinase and activates genes involved in the innate immune response and cancer
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Activation of the hypoxia inducible transcription factor HIF-alpha and the NF-kappaB pathway promotes inflammation mediated tumor progression.

Publication Title

The hypoxia-inducible transcription factor ZNF395 is controlled by IĸB kinase-signaling and activates genes involved in the innate immune response and cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE57141
Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The NF1 tumor suppressor encodes a RAS GTPase-Activating Protein (RasGAP). Accordingly, deregulated RAS signaling underlies the pathogenesis of NF1-mutant cancers. However, while various RAS effector pathways have been shown to function in these tumors, it is currently unclear which specific proteins within these broad signaling pathways represent optimal therapeutic targets. Here we identify mTORC1 as the key PI3K pathway component in NF1-mutant nervous system malignancies and conversely show that mTORC2 and AKT are dispensable. We also report that combined mTORC1/MEK inhibition is required to promote tumor regression in animal models, but only when the inhibition of both pathways is sustained. Transcriptional profiling studies were also used to establish a predictive signature of effective mTORC1/MEK inhibition in vivo. Within this signature, we unexpectedly found that the glucose transporter gene, GLUT1, was potently suppressed but only when both pathways were effectively inhibited. Moreover, unlike VHL and LKB1 mutant cancers, reduction of 18F-FDG uptake measured by FDG-PET required the effective suppression of both mTORC1 and MEK. Together these studies identify optimal and sub-optimal therapeutic targets in NF1-mutant malignancies and define a non-invasive means of measuring combined mTORC1/MEK inhibition in vivo, which can be readily incorporated into clinical trials.

Publication Title

Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP060372
Foxd3 promotes the exit from naïve pluripotency and prevents germline specification through enhancer decommissioning [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Following implantation, mouse epiblast cells transit from a naïve to a primed state in which they are competent for both somatic and primordial germ cell (PGC) specification. Using mouse embryonic stem cells (mESC) as an in vitro model to study the transcriptional regulatory principles orchestrating peri-implantation development, here we show that the transcription factor Foxd3 is necessary for the exit from naïve pluripotency and the progression to a primed pluripotent state. During this transition, Foxd3 acts as a repressor that dismantles a significant fraction of the naïve pluripotency expression program through the decommissioning of active enhancers associated with key naïve pluripotency and early germline genes. Subsequently, Foxd3 needs to be silenced in primed pluripotent cells to allow the reactivation of relevant genes required for proper PGC specification. Our findings uncover a wave of activation-deactivation of Foxd3 as a crucial step for the exit from naïve pluripotency and subsequent PGC specification. Overall design: mRNA profiles were generated by RNA-seq in duplicates for each of the following mESC lines: Foxd3fl/fl;Cre-ER mESC maintained in "Serum+LIF" (SL) treated with TM for three days (SL Foxd3-/-); untreated Foxd3fl/fl;Cre-ER SL mESC (SL Foxd3fl/fl); tetON Foxd3 SL mESC treated with Dox for three days; WT SL mESC treated with Dox for three days; Foxd3fl/fl;Cre-ER mESC maintained in "2i+LIF" (2i) treated with TM for three days (2i Foxd3-/-); untreated Foxd3fl/fl;Cre-ER 2i mESC (2i Foxd3fl/fl).

Publication Title

Foxd3 Promotes Exit from Naive Pluripotency through Enhancer Decommissioning and Inhibits Germline Specification.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17404
Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes.

Publication Title

Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE8681
Gene expression in mouse 3T3-L1 adipocyte tissue culture treated with CLA
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse 3T3-L1 adipocyte tissue culture. The early transcriptome changes were analyzed using high-density microarrays to better characterize the signaling pathways responding to t10c12 CLA. Their gene expression responses between 4 to 24 hr after treatment showed a common set of early gene expression changes indicative of an integrated stress response (ISR).

Publication Title

Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE8679
Gene expression in mouse white adipose tissue
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse white adipose tissue (WAT). The early transcriptome changes in WAT were analyzed using high-density microarrays to better characterize the signaling pathways responding to t10c12 CLA. Their gene expression responses between 4 to 24 hr after treatment showed a common set of early gene expression changes indicative of an integrated stress response (ISR).

Publication Title

Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8683
Gene expression in 3T3-L1 mouse tissue (preadipocytes) treated with Trans-10,Cis-12 conjugated linoleic acid(t10c12 CLA)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse white adipose tissue (WAT) and 3T3-L1 adipocyte tissue culture; however in preadipocyte tissue (this series) the UPS/ISR and fat loss is not detected. The early transcriptome changes in 3T3-L1 preadipocyte tissue culture were analyzed using high-density microarrays to better characterize the signaling pathways responding to t10c12 CLA. Their gene expression responses between 4 to 12 hr after treatment do not show a set of genes indicative of an integrated stress response (ISR).

Publication Title

Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact