refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 63 results
Sort by

Filters

Technology

Platform

accession-icon GSE39450
Coordinated activities of EZH2 and EZH1 are essential for neurogenesis
  • organism-icon Gallus gallus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Polycomb group proteins (PcG) are well known by their function in the regulation of developmental processes. PcG mediated regulation of genetic programs required for proper development are triggered by EZH2 H3K27 methyltransferase activity. EZH1 can partially substitute EZH2 activity. However, unlike EZH2, EZH1 is presence in differentiated and adult tissues suggesting additional biological functions. Here we show that EZH2 is predominantly expressed in neural stem cells being essential for neural stem cells self renewal and homeostasis. There, it controls the transcriptional state of cell cycle regulators, such as CIP1. But it is also necessary to regulate genes involved in surveillance and neuroepithelial polarity. In contrast, EZH1 expression is more abundant in differentiated cells within the spinal cord and its downregulation unables neural stem cells to differentiate. All together our data reveal a complementary but non-redundant role of EZH2 and EZH1 in neurogenesis.

Publication Title

EZH2 regulates neuroepithelium structure and neuroblast proliferation by repressing p21.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP092111
PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation [RNA-seq EED]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Poised enhancers marked by H3K27me3 in pluripotent cells were previously proposed to facilitate the establishment of somatic expression programs upon embryonic stem cell (ESC) differentiation. However, the functional relevance and mechanism of action of poised enhancers remain unknown. Here, we use genetic deletions to demonstrate that poised enhancers are necessary for the induction of major anterior neural regulators. Mechanistically, poised enhancers enable RNA Polymerase II recruitment to their cognate promoters upon differentiation. Interestingly, poised enhancers already establish physical interactions with their target genes in ESC in a Polycomb repressive complex 2 (PRC2) dependent manner. Loss of PRC2 led to neither the activation of poised enhancers nor the induction of their putative target genes in undifferentiated ESC. In contrast, loss of PRC2 severely and specifically compromised the induction of major anterior neural genes representing poised enhancer targets. Overall, our work illuminates a novel function for polycomb proteins, which we propose facilitate neural induction by providing major anterior neural loci with a permissive regulatory topology. Overall design: mRNA profiles were generated by RNA-seq from mESC and AntNPC for the following lines: WT mESC, WT AntNPC, EED-/- mESC and EED-/- AntNPC

Publication Title

PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP092184
Poised enhancers regulatory activity is topologically facilitated by polycomb [RNA-seq LHX5]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Poised enhancers marked by H3K27me3 in pluripotent cells were previously proposed to facilitate the establishment of somatic expression programs upon embryonic stem cell (ESC) differentiation. However, the functional relevance and mechanism of action of poised enhancers remain unknown. Here, we use genetic deletions to demonstrate that poised enhancers are necessary for the induction of major anterior neural regulators. Mechanistically, poised enhancers enable RNA Polymerase II recruitment to their cognate promoters upon differentiation. Interestingly, poised enhancers already establish physical interactions with their target genes in ESC in a Polycomb repressive complex 2 (PRC2) dependent manner. Loss of PRC2 led to neither the activation of poised enhancers nor the induction of their putative target genes in undifferentiated ESC. In contrast, loss of PRC2 severely and specifically compromised the induction of major anterior neural genes representing poised enhancer targets. Overall, our work illuminates a novel function for polycomb proteins, which we propose facilitate neural induction by providing major anterior neural loci with a permissive regulatory topology. Overall design: mRNA profiles were generated by RNA-seq from AntNPC derived from mESC: WT AntNPC (four biological replicates), PE Lhx5(-109)-/- Clon1 AntNPC (two biological replicates) and PE Lhx5(-109)-/- Clon2 AntNPC (two biological replicates).

Publication Title

PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE36056
Transcriptional profiling of intestinal samples from Atg4b knock-out mice during chemical-induced colitis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase paralleling the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b-/- mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. Atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohns disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b-/- mice. Taken together, these results provide additional evidence on the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that Atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency

Publication Title

ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE71922
Loss of the proteostasis modulator AIRAPL causes myeloid transformation by deregulating IGF-1 signaling
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Transcriptional profiling of human acute myeloid leukemia cells lines HEL and SET2 transduced with an IGF1R shRNA and miR-125a sponge.

Publication Title

Loss of the proteostasis factor AIRAPL causes myeloid transformation by deregulating IGF-1 signaling.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE14378
Expression data from pulmonary metastases of clear-cell renal cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The understanding of metastatic spread is limited and molecular mechanisms causing particular characteristics of metastasis, like varying dormancy periods of Mets originating from the same primary tumor entity or the differing number of Mets in patients with the same primary tumor, are largely unknown. Knowing the molecular fundamentals of these phenomena would support the prognosis of patients outcome and facilitate the decision for an appropriate therapy regime.

Publication Title

Gene signatures of pulmonary metastases of renal cell carcinoma reflect the disease-free interval and the number of metastases per patient.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE49232
Gene expression analysis of in vivo-grown tumors treated with compounds that either de-bulk the tumor or target cancer stem cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A large body of evidence has demonstrated that many human tumors are maintained by a small cell population called cancer stem cells (CSCs) or tumor progenitors, which are responsible for tumor formation, therapy resistance and metastasis. We found that ionizing radiation treatment enriches for the CSC phenotype and properties by preferential survival and expansion of tumor progenitor cells. Our studies revealed that aldehyde dehydrogenase (ALDH) activity is indicative of prostate tumor progenitor cells with increased chemo- and radioresistance, enhanced migratory potential, improved DNA- double strand break repair and activation of the signaling pathways, which promote self-renewal and epithelial-mesenchymal transition. We found that X-ray irradiation can convert the bulk tumor cells to more clonogenic and radioresistant population positive for expression of CSC markers. For the first time we showed that irradiation increases histone H3K4 and H3K36 methylation in prostate cancer cells, thereby reactivating transcription of epigenetically silenced target genes. We showed that radioresistant tumor progenitor population undergoes a phenotypical switching during the course of irradiation, suggesting that controlling the phenotypical and functional properties of CSCs during radiation therapy is ultimative for the optimization of treatment strategies. Our studies have shown that CSC markers may be beneficial in prediction of tumor radiocurability, and combination of irradiation with therapies directed against CSCs can be a useful strategy to improve cancer treatment.

Publication Title

Aldehyde Dehydrogenase Is Regulated by β-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18133
Genome-wide analysis of gene expression in colon and brain during the suckling period.
  • organism-icon Rattus norvegicus
  • sample-icon 107 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Gene expression was analysed in the colon and brain of normal rat pups from late prenatal through early postnatal development. Tissue was isolated from pups one day prior to the anticipated date of birth and throughout the suckling period until the end of weaning.

Publication Title

Sialic acid utilisation and synthesis in the neonatal rat revisited.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30999
Expression data from skin biopsy samples from patients with moderate-to-severe psoriasis
  • organism-icon Homo sapiens
  • sample-icon 162 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A gene expression profiling sub-study was conducted in which skin biopsy samples were collected from 85 patients with moderate-to-severe psoriasis who were participating in ACCEPT, an IRB-approved Phase 3, multicenter, randomized trial. This analysis identified 4,175 probe-sets as being significantly modulated in psoriasis lesions (LS) compared with matched biopsies of non-lesional (NL) skin.

Publication Title

Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE80047
Based on Molecular Profiling of Gene Expression, Palmoplantar Pustulosis and Palmoplantar Pustular Psoriasis are Highly Related Diseases that Appear to Be Distinct from Psoriasis Vulgaris
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

There is a controversy surrounding the existence of palmoplantar pustulosis (PPP) and palmoplantar pustular psoriasis (PPPP) as separate clinical entities or as variants of the same clinical entity. We used gene expression microarray to compare gene expression in PPP and PPPP. PPP and PPPP could not be differentiated using gene expression microarray suggesting that they are not distinct clinical entities. Increased expression of GPRIN1, and ADAM23 in keratinocytes suggests that these proteins could be new therapeutic targets for PPP/PPPP.

Publication Title

Based on Molecular Profiling of Gene Expression, Palmoplantar Pustulosis and Palmoplantar Pustular Psoriasis Are Highly Related Diseases that Appear to Be Distinct from Psoriasis Vulgaris.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact