refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 245 results
Sort by

Filters

Technology

Platform

accession-icon GSE12198
Primary NKcells vs. NKAES-derived NK cells vs. NKcells stimulated by low/high dose IL2 after 7days of culture
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional profiling of NKAES-derived NK cells after 7 days of culture compared to primary human NK cells and NK cells stimulated by low or high dose IL2 after 7 days of culture.

Publication Title

Expansion of highly cytotoxic human natural killer cells for cancer cell therapy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98554
Expression data from young and aged Drosophila heads
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

We used microarrays to detail the global gene expression changes during aging in fly heads and identified genes related to the unfolded protein response are up-regulated upon aging.

Publication Title

EDEM Function in ERAD Protects against Chronic ER Proteinopathy and Age-Related Physiological Decline in Drosophila.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE31598
Expression data from directly induced neural stem cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Induced pluripotent stem (iPS) cells give rise to neural stem cells, which are applicable for therapeutic transplantation in treatment of neural diseases. However, generation of neural stem cells from iPS cells requires a careful selection of safe iPS clones. We sought to determine whether direct induction of neural stem cells from partially reprogrammed somatic cells is able to generate safer cells rapidly. We have successfully established direct induction system from fibroblast to neural stem cells. To characterize these directly induced neural stem cells, Gene expression profiles were compared with iPS cell or ES cell-derived neurosphere. We used affymetrix microarrays to compare the global gene expression of neurospheres prepared several method.

Publication Title

Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31725
Comparison between mouse ES/iPS derived neurosphere and mouse primary culture of neurospheres obtained from fetal mouse ganglionic eminence
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recent reports have emphasized the pitfalls of iPSC technology including the potential for immunogenicity of transplanted cells. It is serious safety-related concern for iPSC-based cell therapy. However, preclinical data supporting the safety and efficacy of iPSCs are also accumulating. To address the concern of immunogenicity of ESCs/iPSCs or ESCs/iPSCs-derived neurospheres, global gene expression profiles were compared between undifferentiated mouse ESCs (EB3 line), mouse iPSCs (38C2 line), and ESC/iPSC-derived neurosphere and mouse primary culture of neurosphere obtained from fetal mouse ganglionic eminence. Mouse adult sklin fibroblast was used as a control.

Publication Title

Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23216
PITX1 suppresses TERT transcription
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Using microcell-mediated chromosome transfer (MMCT) into the mouse melanoma cell line, B16F10, we have previously found that human chromosome 5 carries a gene, or genes, that can negatively regulate TERT expression. To identify the gene responsible for the regulation of TERT transcription, we performed cDNA microarray analysis using parental B16F10 cells, telomerase negative B16F10 microcell hybrids with a human chromosome 5 (B16F10MH5), and its revertant clones (MH5R) with reactivated telomerase. Here we report the identification of PITX1, whose restoration leads to the downregulation of mouse tert (mtert) transcription, as a TERT suppressor gene. Additionally, both human TERT (hTERT) and mouse TERT (mtert) promoter activity can be suppressed by PITX1. We showed that three and one binding sites, respectively, within the hTERT and mtert promoters that express a unique conserved region are responsible for the transcriptional activation of TERT. Furthermore, we showed that PITX1 binds to the TERT promoter both in vitro and in vivo. Thus, PITX1 suppresses TERT transcription through direct binding to the TERT promoter, which ultimately regulates telomerase activity.

Publication Title

Identification of PITX1 as a TERT suppressor gene located on human chromosome 5.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE50687
Expression data from testes of the mouse X-chromosome substitution strains
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To investigate the evolutionary divergence of transcriptional regulation between the mouse subspecies, we performed transcriptome analysis by microarray on testes from the X-chromosome substitution strain, which carries different subspecies-derived X chromosome on the host subspecies genome. Transcription profiling showed that large-scale aberrations in gene expression were occurred on the introgressed X chromosome. This improper expression was restored by introducing chromosome 1 from the same donor strain as the X chromosome, suggesting that the genetic incompatibility between trans-acting regulatory gene(s) on chromosome 1 and X-linked downstream genes might be a cause of the misregulation.

Publication Title

Evolutionarily diverged regulation of X-chromosomal genes as a primal event in mouse reproductive isolation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56246
Dectin-1-mediated signaling leads to characteristic gene expressions in rat mast cells
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Rat mast cell line RBL-2H3 was analyzed to investigate the molecular mechanism of Dectin-1-mediated activation and responses of mast cells.

Publication Title

Dectin-1-mediated signaling leads to characteristic gene expressions and cytokine secretion via spleen tyrosine kinase (Syk) in rat mast cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE145367
GeneChip Expression Array
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis to compare control cells and sorted cells

Publication Title

Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52686
Expression data from mDCT cell-line over-expressing hMR
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Target gene of mineralocorticoid receptor (MR) is comparatively unknown, although distal convoluted tubule (DCT) expresses MR in in vivo.

Publication Title

Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE16341
A simple optimization can improve the performance of single feature polymorphism detection by Affymetrix expression array: Transcript and Genome Hybridizations
  • organism-icon Oryza sativa indica group
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

The publicly available genome sequence information of two rice strains, japonica cultivar Nipponbare and indica cultivar 93-11, opens a great opportunity for investigation of performances DNA genotyping by high-density oligonucleotide arrays. Here, we compare single feature polymorphism (SFP) detection performances between whole genome hybridization and transcript hybridization using Affymetrix Rice Expression Array and the two rice cultivars.

Publication Title

A simple optimization can improve the performance of single feature polymorphism detection by Affymetrix expression arrays.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact