refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 169 results
Sort by

Filters

Technology

Platform

accession-icon GSE110199
Comparison between WT and bes1 in an in vitro tissue culture system, VISUAL
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

We have previously established an in vitro tissue culture system (named VISUAL; Kondo et al., 2016), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons

Publication Title

BES1 and BZR1 Redundantly Promote Phloem and Xylem Differentiation.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE20586
Expression data from Arabidopsis suspension cells overexpressing VND6 and SND1
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Xylem consists of three types of cells: vessel cells, also referred to as tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanism of their gene regulation. Here, we show that VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master regulator of TEs, regulates these processes in a coordinated manner. We first identified specific genes downstream of VND6 by comparing them with those of SECONDARY WALL-ASSOCIATES NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, with transformed suspension culture cells in microarray experiments.

Publication Title

Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation.

Sample Metadata Fields

Time

View Samples
accession-icon GSE41358
Expression data from mouse preimplantation cloned embryos
  • organism-icon Mus musculus
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptiome analysis is an excellent approach to understand the mechanism underlying nuclear reprogramming in somatic-cell-cloned embryos. Analysis of the transcriptomic data from the oocyte to blastocyst stage revealed that specific genes were inappropriately reprogrammed at each stage. Sertoli cell-cloned embryos appear to develop normally because the progression of incorrect reprogramming is concealed throughout development.

Publication Title

The transcriptomic architecture of mouse Sertoli cell clone embryos reveals temporal–spatial-specific reprogramming.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19978
Different gene expressions in root tips between CLE10 and CLE25 treatment
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Cellcell communication is critical for tissue and organ development. In plants, secretory CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides function as intercellular signaling molecules in various aspects of tissue development. However, little is known about intracellular signaling pathways functioning in vascular development downstream of the CLE ligands. To elucidate CLE signaling pathway, we performed GeneChip analysis.

Publication Title

CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58004
Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Persistent colonization of the gastric mucosa by Helicobacter pylori (Hp) elicits chronic inflammation and aberrant epithelial cell proliferation, which increases the risk of gastric cancer. We examined the ability of microRNAs to modulate gastric cell proliferation in response to persistent Hp infection and found that epigenetic silencing of miR-210 plays a key role in gastric disease progression. Importantly, DNA methylation of the miR-210 gene was increased in Hp-positive human gastric biopsies as compared to Hp-negative controls. Moreover silencing of miR-210 in gastric epithelial cells promoted proliferation. We identified STMN1 and DIMT1 as miR-210 target genes and demonstrated that inhibition of miR-210 expression augmented cell proliferation by activating STMN1 and DIMT1. Together, our results highlight inflammation-induced epigenetic silencing of miR-210 as a mechanism of induction of chronic gastric diseases, including cancer, during Hp infection.

Publication Title

Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP071148
Gene and retrotransposon expression analysis in the F1 hybrid background of B6 and MSM for WT, Pld6 KO, and Dnmt3l KO male germ cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

mRNA sequencing analysis of FACS-purified leptotene/zygotene (L/Z) spermatocytes Overall design: Compare transcriptomes of WT, Pld6 KO, and Dnmt3l KO germ cells in the F1 hybrid background of B6 and MSM to study these mutations affecting gene expression due to nearby retrotransposons.

Publication Title

Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE45665
Expression data (U133 Plus 2.0) from fibroblast like synoviocytes from patients with rheumatoid arthritis (RA-FLS) stimulated by DcR3
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor (TNFR) superfamily, competitively binds and inhibits members of the TNF family, including Fas ligand (FasL), LIGHT, and TL1A. DcR3 was recently reported not only to act as a decoy receptor for these TNFRs but also to play a role as a ligand for the pathogenesis of RA.

Publication Title

Decoy receptor 3 regulates the expression of various genes in rheumatoid arthritis synovial fibroblasts.

Sample Metadata Fields

Specimen part, Race

View Samples
accession-icon GSE18474
A novel metabolic monitoring system identified nutrition-mediated microbial interactions
  • organism-icon Escherichia coli, Bifidobacterium longum
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

"Omics" technologies have been developed to understand the whole complex microbial systems; however, most omics studies reported so far were utilized to analyze the living matters of single-species. To understand the cell-cell interaction in the gut microbial complex, we selected to examine the interaction of Escherichia coli O157:H7 (O157) and Bifidobacterium longum (BL), known as a pathogenic and a commensal bacteria, as a first step for understanding the whole gut microbial complex. We have developed a novel time-lapse 2D-NMR metabolic profiling system in order to measure the extracellular metabolites, which are considered a key factor to understand the bacterial crosstalk. Furthermore, in combination with transcriptome and proteome analysis, we found that the relationship between BL and O157 could be partially regarded as the producer and the consumer of nutrients, especially in the case of serine and aspartate metabolism. These findings suggest that our novel profiling systems could be a powerful tool toward understanding crosstalk of the whole microbial complex such as the gut, industrial bioreactors or environmental microbial communities.

Publication Title

Dynamic omics approach identifies nutrition-mediated microbial interactions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE153378
Expression data (U133 Plus 2.0) from fibroblast like synoviocytes from patients with rheumatoid arthritis (RA-FLS) stimulated by FasL
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Fas ligand (FasL)/TNFSF6, a member of the tumor necrosis factor (TNF) superfamily, can promote apoptosis in activated primary B cells, T cells, dendritic cells, and synovial fibroblasts through Fas and is involved in the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA). Meanwhile, decoy receptor 3 (DcR3) competitively binds soluble FasL in addition to TL1A and LIGHT and inhibits the signaling of FasL via Fas. Therefore, FasL-DcR3/Fas signaling may be involved in the pathogenesis of RA.

Publication Title

Expression profiling of genes in rheumatoid fibroblast-like synoviocytes regulated by Fas ligand via cDNA microarray analysis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11119
SOL2 mutation affect gene expresstion at root apex
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Analysis of sol2 mutant. SOL2 protein is a receptor-like kinase

Publication Title

The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact