refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 167 results
Sort by

Filters

Technology

Platform

accession-icon GSE33442
The target genes of EGFR activity in glioma cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

As a first step towards identifying the target genes of EGFR activity in glioma cells, genome-wide expression analyses were performed using the Affymetrix GeneChip Human Genome U133A array.

Publication Title

Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE9200
Feedback Circuit among INK4 Tumor Suppressors Constrains Human Glioblastoma Development
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18INK4C and p16INK4A codeletion. Functional reconstitution of p18INK4C in GBM cells null for both p16INK4A and p18INK4C resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18INK4C in p16INK4A-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16INK4A in primary astrocytes induced a concomitant increase in p18INK4C. Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18INK4C in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.

Publication Title

Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9171
Expression profiles of human glioblastoma frozen tumors and cell lines
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18INK4C and p16INK4A codeletion. Functional reconstitution of p18INK4C in GBM cells null for both p16INK4A and p18INK4C resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18INK4C in p16INK4A-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16INK4A in primary astrocytes induced a concomitant increase in p18INK4C. Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18INK4C in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.

Publication Title

Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-424
Transcription profiling by array of Arabidopsis seedlings overexpressing an IPMS gene from Brassica (BatIMS)
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Effect of IPMS (BatIMS) overexpression on Arabidopsis thaliana.

Publication Title

Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE58095
Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis.
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We identified fibro-inflammatory and keratin gene expression signatures in systemic sclerosis skin.

Publication Title

Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis.

Sample Metadata Fields

Age, Specimen part, Race, Subject, Time

View Samples
accession-icon GSE47162
Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We identified eighty two skin transcripts significantly correlated with the severity of interstitial lung disease (ILD) in systemic sclerosis.

Publication Title

Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis.

Sample Metadata Fields

Age, Specimen part, Race, Subject

View Samples
accession-icon GSE80342
Pilot open label clinical trial of oral ruxolitinib in patients with alopecia areata
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This goal of these studies were to examine gene expression profiles of skin from patients with alopecia areata undergoing treatment with oral ruxoltinib.

Publication Title

Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata.

Sample Metadata Fields

Sex, Race, Subject

View Samples
accession-icon GSE20570
Gene profile of PTIP deletion in adult murine cardiac tissue
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Methylation of histone H3 lysine 4 (H3K4me) at actively expressed, cell type-specific genes is established during development by the Trithorax group of epigenetic regulators. In mammals, the Trithorax family includes KMT2A-D (MLL1-4), a family of SET domain proteins that function in large complexes to impart mono-, di-, and trimethylation at H3K4. Individual KMT2s and their co-factors are essential for embryonic development and the establishment of correct gene expression patterns, presumably by demarcating the active and accessible regions of the genome in a cell specific and heritable manner. Despite the importance of H3K4me marks in development, little is known about the importance of histone methylation in maintaining gene expression patterns in fully differentiated and non-dividing cell types. In this report, we utilized an inducible cardiac-specific Cre driver to delete the PTIP protein, a key component of a H3K4me complex, and ask whether this activity is still required to maintain the phenotype of terminally differentiated cardiomyocytes. Our results demonstrate that reducing the H3K4me3 marks is sufficient to alter gene expression patterns and significantly augment systolic heart function. These results clearly show that maintenance of H3K4me3 marks is necessary for the stability of the transcriptional program in differentiated cells. The array we performed allowed us to identify genes that are regulated by PTIP and histone methylation.

Publication Title

Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE100543
Affy MA Comparison of Porcine Esophageal Submucosal Glands (ESMGs), overlying squamous tissue, and ESMG-derived spheroids
  • organism-icon Sus scrofa
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.0 ST Array (porgene10st)

Description

Microarray analysis was used to compare the transcriptome of esophageal submucosal gland (ESMG) derived spheroids in culture relative to squamous epithelium and fresh ESMGs.

Publication Title

Porcine Esophageal Submucosal Gland Culture Model Shows Capacity for Proliferation and Differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8438
IP Staufen1
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In human cells, Staufen1 is double-stranded RNA-binding protein involved in several cellular functions including mRNA localization, translation and decay. We used a genome wide approach to identify and compare the mRNA targets of mammalian Staufen1. The mRNA content of Staufen1 mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with a Stau1-HA expressor. Our results indicate that 7% of the cellular RNAs expressed in HEK293T cells are found in Stau1-containing mRNPs. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes and catalytic activity.

Publication Title

A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact