refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 107 results
Sort by

Filters

Technology

Platform

accession-icon GSE19016
The metabolic responce to iron deficiency in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Iron is an essential cofactor for enzymes involved in numerous cellular processes. We analyzed the metabolomes and transcriptomes of yeast grown in iron-rich and iron-poor media to determine which biosynthetic processes are altered when iron availability falls.

Publication Title

Metabolic response to iron deficiency in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP189905
Mutations in RABL3 Alter KRAS Prenylation and are Associated with Hereditary Pancreatic Cancer
  • organism-icon Danio rerio
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with limited treatment options. Familial predisposition to PDAC occurs in ~10% of cases, but causative genes have not been identified in most families. Uncovering the genetic basis for PDAC susceptibility has immediate prognostic implications for families and can provide mechanistic clues to PDAC pathogenesis. Here, we perform whole-genome sequence analysis in a family with multiple cases of PDAC and identify a germline nonsense mutation in the member of RAS oncogene family-like 3 (RABL3) gene never before directly associated with hereditary cancer. The truncated mutant allele (RABL3_p.S36*) co-segregates with cancer occurrence. To evaluate the contribution of the RABL3 mutant allele in hereditary cancer, we generated rabl3 heterozygous mutant zebrafish and found increased susceptibility to cancer formation in two independent cancer models. Unbiased approaches implicate RABL3 in RAS pathway regulation: the transcriptome of juvenile rabl3 mutants reveals a KRAS upregulation signature, and affinity-purification mass spectrometry for proteins associated with RABL3 or RABL3_p.S36* identifies Rap1 GTPase-GDP Dissociation Stimulator 1 (RAP1GDS1, SmgGDS), a chaperone that regulates prenylation of RAS GTPases. Indeed, we find that RABL3_p.S36* accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Furthermore, rabl3 homozygous mutant zebrafish develop severe craniofacial, skeletal, and growth defects consistent with human RASopathies, and these defects are partially rescued with the MEK inhibitor trametinib. Finally, we identify additional germline mutations in RABL3 that impact RAS activity in vivo and have a significant burden in a cohort of patients with developmental disorders, suggesting a role in undiagnosed RASopathies. Moreover, RABL3 is upregulated in multiple human PDAC cell lines and knockdown abrogates proliferation, consistent with a broader role for RABL3 in PDAC. Our studies identify the RABL3 mutation as a new target for genetic testing in cancer families and uncover a novel mechanism for dysregulated RAS activity in development and cancer. Overall design: WT (4 replicates) and homozygous rabl3-TR41 mutant (3 replicates) larval zebrafish at 21 days of age.

Publication Title

Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP126511
Global transcriptional changes in U87MG glioblastoma cells upon shRNA-mediated TRIM52 knockdown
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

shRNA-mediated ablation of the RING-finger protein TRIM52 from multiple glioblastoma cell lines reduces proliferation and tumorigenesis. To identify gene signatures underlying this phenomenon, transcritional profile of TRIM52 knockdown cells was compared to control cells. Upon TRIM52 ablation, we find 278 differentially regulated genes. Gene ontology analysis reveals that many of the upregulated genes are associated with glycolysis and biosynthetic processes. Overall design: U87MG glioblastoma cells were stably transduced with doxycycline-inducible shRNA constructs targeting TRIM52 (two different shRNAs) or controls (two different non-targeting shRNAs). Knockdown was induced for five days using 2µg/ml doxycycline. shRNA expressing cells were sorted based on shRNA-coupled GFP expression via flow cytometry. mRNA sequening was performed in duplicate per shRNA cell line.

Publication Title

Human tripartite motif protein 52 is required for cell context-dependent proliferation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP049696
RNAseq of Individual 4T1 Clonal Populations
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The transcriptional profile 23 cell lines derived from single clones of the 4T1 cell lines were assessed with RNAseq. The two clones with a strong propensity to intravasate were found to have 12 genes in common that were overexperessed relative to the other 21 clones. Overall design: Clone RNAseq 1) 23 clonal lines were established using single cell FACs sorting from the 4T1 mammary cancer cell line. 2) After establishing the lines the clones were assesed (in a pooled setting) for their capacity to intravasate the vascular system. 3) Transcriptional profiling was carried out using RNAseq. 4) Two clones were found to be strong intravasators and these were compared to the other clones to identify genes that were overexpressed (as compared to at least half of the other clones in both lines).

Publication Title

A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77434
Functionally relevant prediction model for colorectal cancer
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Filtered selection coupled with support vector machines generate functionally relevant prediction model for colorectal cancer. In this study, we built a model that uses Support Vector Machine (SVM) to classify cancer and normal samples using Affymetrix exon microarray data obtained from 90 samples of 48 patients diagnosed with CRC. From the 22,011 genes, we selected the 20, 30, 50, 100, 200, 300 and 500 genes most relevant to CRC using the Minimum-RedundancyMaximum-Relevance (mRMR) technique. With these gene sets, an SVM model was designed using four different kernel types (linear, polynomial, radial basis function and sigmoid).

Publication Title

Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
accession-icon GSE65370
Eicosapentaenoic and docosahexaenoic acid-enriched high fat diet delays the development of fatty liver in mice.
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To investigate the effects of quality of fat in a high fat diet (HFD) over time on hepatic lipid storage and transcriptome in mice.

Publication Title

Eicosapentaenoic and docosahexaenoic acid-enriched high fat diet delays the development of fatty liver in mice.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE22532
Identifying Molecular Effects of Diet through Systems Biology: Influence of Herring Diet on Sterol Metabolism and Protein Turnover in Mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Identifying molecular effects between herring and beef diet in Ldlr-/- mice

Publication Title

Identifying molecular effects of diet through systems biology: influence of herring diet on sterol metabolism and protein turnover in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP066860
3´-end sequencing of poly(A)+ RNA in wild-type Saccharomyces cerevisiae and nuclear exosome mutant strains
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The nuclear exosome performs critical functions in non-coding RNA processing, and in diverse surveillance functions including the quality control of mRNP formation, and in the removal of pervasive transcripts. Most non-coding RNAs and pervasive nascent transcripts are targeted by the Nrd1p-Nab3p-Sen1p (NNS) complex to terminate Pol II transcription coupled to nuclear exosome degradation or 3´-end trimming. Prior to nuclear exosome activity, the Trf4p-Air2p-Mtr4p polyadenylation complex adds an oligo-A tail to exosome substrates. Inactivating exosome activity stabilizes and lengthens these A-tails. We utilized high-throughput 3´-end poly(A)+ sequencing to identify at nucleotide resolution the 3´ ends targeted by the nuclear exosome, and determine the sites of NNS-dependent termination genome-wide. Overall design: 3´-end mapping of wild-type and various nuclear exosome mutant strains, either using gene knockouts or the anchor away system to conditionally deplete FRB-tagged proteins from the nucleus

Publication Title

Common genomic elements promote transcriptional and DNA replication roadblocks.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP124969
Differential expression of H3.3 genes and their role in modulating temperature stress response in Caenorhabditis elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We generated gene expression profiles of N2 (wild type) and strain FAS43 (Histone H3.3 null worms containing knockout alleles of all genes with homology to human histone H3.3: his-69, his-70, his-71, his-72, his-74) at embryonic and first larval instar stages. Overall design: RNA was isolated from N2 and H3.3 null mixed-stage embryos and L1 larvae grown at 20°C using Trizol, in duplicates for all samples. RNA-seq libraries were prepared using the Illumina TruSeq protocol.

Publication Title

Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in <i>Caenorhabditis elegans</i>.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE24102
Expression data from granulocytic MDSC (G-MDSC) and neutrophils
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Myeloid derived suppressor cells (MDSC) playing the immune suppressive roles in tumor bearing host consists of two major subsets of granulocytic and monocytic cells. Granulocytic MDSC (G-MDSC) express CD11b+ Gr-1high Ly6G+ Ly6Clow and produce high level of reactive oxygen species (ROS). Interestingly, neutrophils are well known ROS producing cells during immune defensive process and share same surface markers with G-MDSC. These similar features always brought the fundamental questions whats the difference between G-MDSC and neutrophils but its not yet proven clearly.

Publication Title

Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact