refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 196 results
Sort by

Filters

Technology

Platform

accession-icon SRP091936
RNA-seq of SOX5 overexpressing primary human neuronal progenitors
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: The goal of this study was to assess gene expression changes in neurons overexpressing SOX5 using human primary neuronal culture system. Methods: 6 samples each from control GFP and SOX5 overexpressing neurons were used to isolate total RNA using miRNeasy kit, Qiagen. We performed rRNA-depleted 69bp paired end stranded RNA-seq on neurons overexpressing either GFP or SOX5 tagged with GFP. Overexpression of SOX5 in neurons validated that a significant proportion of Attenuated cortical patterning (ACP) genes are regulated by SOX5, and that predicted SOX5 targets exhibit a net downregulation, consist with its repressive function. This supports the prediction that attenuated patterning of SOX5 between cortical regions contributes to direct alterations in SOX5 targets and likely to indirect alterations in SOX5 non-targets in the ACP set. delpleted 69 bp stranded RNA-seq in Overall design: SOX5 was overexpressed in primary human neuronal cultures using a lentiviral system. Briefly full-length human SOX5 gene was cloned in pLVU/GFP vector (gift from Lars Ittner [Addgene plasmid #24177]) using the gateway recombination technique. Lentivirus was produced in HEK293T cells using a second generation packaging vector system (psPAX2, a gift from Didier Trono [Addgene plasmid #12260] and pCMV-VSV-G, a gift from Bob Weinberg [Addgene plasmid #8454]) as described by Stewart et al., 200331. Primary human neurons were infected at plating at a multiplicity of infection (MOI) of 10 with either the SOX5 overexpressing construct or a control pLVU-GFP backbone vector. 14 days after infection, RNA from the samples were isolated using miRNeasy micro kit (Qiagen, Carlsbad) and 50bp paired-end libraries were prepared using SMARter Stranded Total RNA sample prep kit (Clontech) with rRNA depletion. Libraries were then multiplexed and sequenced with HiSeq 2500 instrument (Illumina).

Publication Title

Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE40130
Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Elevated expression and activity of the epidermal growth factor receptor (EGFR)/protein kinase B (Akt) signaling pathway is associated with development, progression and treatment resistance of head and neck cancer (HNC). Several studies have demonstrated that microRNA-7 (miR-7) regulates EGFR expression and Akt activity in a range of cancer cell types via its specific interaction with the EGFR mRNA 3 untranslated region (3-UTR). In the present study, we found that miR-7 regulated EGFR expression and Akt activity in HNC cell lines, and that this was associated with reduced growth in vitro and in vivo of cells (HN5) that were sensitive to the EGFR tyrosine kinase inhibitor (TKI) erlotinib (Tarceva). miR-7 acted synergistically with erlotinib to inhibit growth of erlotinib-resistant FaDu cells, an effect associated with increased inhibition of Akt activity. Microarray analysis of HN5 and FaDu cell lines transfected with miR-7 identified a common set of downregulated miR-7 target genes, providing insight into the tumor suppressor function of miR-7. Furthermore, we identified several target miR-7 mRNAs with a putative role in the sensitization of FaDu cells to erlotinib. Together, these data support the coordinate regulation of Akt signaling by miR-7 in HNC cells and suggest the therapeutic potential of miR-7 alone or in combination with EGFR TKIs in this disease.

Publication Title

Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE52246
Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cellular plasticity confers cancer cells the ability to adapt to micro-environmental changes, a fundamental requirement for tumour progression and metastasis. The epithelial to mesenchymal transition (EMT) is a transcriptional programme associated with increased cell motility and stemness. Beside EMT, the mesenchymal to amoeboid transition (MAT) has been described during tumour progression but, to date, little is known about its transcriptional control and involvement in stemness. The aim of this study is to investigate (i) the transcriptional profile associated with the MAT programme and (ii) to study whether MAT acquisition in melanoma cancer cells correlate with clonogenic potential to promote tumor growth. Our results demonstrate that MAT programme in melanoma is characterised by increased stemness and clonogenic features of cancer cells, thus sustaining tumour progression. Furthermore, these data suggest that stemness is not an exclusive feature of cells undergoing EMT, but more generally is associated with an increase in cellular plasticity of cancer cells.

Publication Title

Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE54279
Expression microarray analysis of human pancreatic islets reveals CD59 function
  • organism-icon Homo sapiens
  • sample-icon 128 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Pancreatic islets are central in type 2-diabetes development, which coincides with increased activity of innate immunity. Intriguingly, human pancreatic islets express many complement genes. The most highly expressed gene was the complement inhibitor CD59 that is GPI anchored to the cell membrane, which unexpectedly was found in high amounts intracellularly in beta cells. Silencing of CD59 strongly suppressed insulin secretion. Importantly, this suppression was unrelated to established CD59 functions, but rather depletion of intracellular CD59. Imaging experiments identified a distal site of inhibition in the exocytotic pathway, but prior to emptying of the insulin granules. Proximity Ligation Assays pin-pointed the mechanism to impaired turnover of exocytosis-regulating SNARE-proteins and CD59 was detected in complex with VAMP2 and syntaxin. CD59 was downregulated by 24-h glucose incubations in human islets, rat cell lines and in islets from three rodent diabetes models.

Publication Title

The complement inhibitor CD59 regulates insulin secretion by modulating exocytotic events.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68166
Integrated miRNA and gene expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE68164
Integrated miRNA and gene expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation [gene]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment.

Publication Title

Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP051384
Global gene expression analysis of fresh-frozen, furan-exposed mouse liver using RNA-seq [polyA enrichment]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Furan is a mouse and rat hepatocarcinogen. We sought to determine if furan-induced gene expression changes could be detected in paired fresh-frozen and formalin-fixed paraffin embedded (FFPE) samples using RNA-seq (polyA-enrichment protocol). All samples in this study (fresh-frozen, 18 hours in formalin, 3 weeks in formalin) were also examined using one- and two-colour microarrays and RNA-seq (ribo-depletion protocol) in order to determine the effect of the technology on gene expression profiles. Overall design: In this study we examined the transcriptional response in liver tissue of female B6C3F1 mice exposed to furan for 3 weeks to 8 mg/kg bw furan (or vehicle control) and sacrificed four hours after the final exposure. Each dose group had 4 biological replicates. There were a total of 24 samples included in the final analysis of the polyA enrichment RNA-seq experiment.

Publication Title

Mining the Archives: A Cross-Platform Analysis of Gene Expression Profiles in Archival Formalin-Fixed Paraffin-Embedded Tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58472
Molecular profiling of ovarian carcinoma platinum-sensitive and -resistant cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58470
Molecular profiling of ovarian carcinoma platinum-sensitive and -resistant cell lines (gene expression)
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Resistance to platinum compounds represents a major obstacle to the cure of ovarian carcinoma. The molecular profiling of drug-sensitive and drug-resistant cells may be helpful to clarify if altered gene expression can contribute to the drug-resistant phenotype. The expression pattern of three ovarian carcinoma cell lines was examined. The analysis revealed the modulation of several genes in the two platinum-resistant cell lines as compared to parental platinum-sensitive cells. The integration of the information obtained through gene expression analysis may be useful to clarify the specific molecular alterations of factors and pathway favouring survival of tumor cells.

Publication Title

PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE60722
Regulation of casodex-dependent AR activity by NCOR1
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Proliferation of prostate cancer cells, LNCaP, is suppressed by casodex. This suppression requires expression of AR coregulator, NCOR1.

Publication Title

Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact