refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 196 results
Sort by

Filters

Technology

Platform

accession-icon GSE52246
Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cellular plasticity confers cancer cells the ability to adapt to micro-environmental changes, a fundamental requirement for tumour progression and metastasis. The epithelial to mesenchymal transition (EMT) is a transcriptional programme associated with increased cell motility and stemness. Beside EMT, the mesenchymal to amoeboid transition (MAT) has been described during tumour progression but, to date, little is known about its transcriptional control and involvement in stemness. The aim of this study is to investigate (i) the transcriptional profile associated with the MAT programme and (ii) to study whether MAT acquisition in melanoma cancer cells correlate with clonogenic potential to promote tumor growth. Our results demonstrate that MAT programme in melanoma is characterised by increased stemness and clonogenic features of cancer cells, thus sustaining tumour progression. Furthermore, these data suggest that stemness is not an exclusive feature of cells undergoing EMT, but more generally is associated with an increase in cellular plasticity of cancer cells.

Publication Title

Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE68166
Integrated miRNA and gene expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE68164
Integrated miRNA and gene expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation [gene]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment.

Publication Title

Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE58472
Molecular profiling of ovarian carcinoma platinum-sensitive and -resistant cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58470
Molecular profiling of ovarian carcinoma platinum-sensitive and -resistant cell lines (gene expression)
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Resistance to platinum compounds represents a major obstacle to the cure of ovarian carcinoma. The molecular profiling of drug-sensitive and drug-resistant cells may be helpful to clarify if altered gene expression can contribute to the drug-resistant phenotype. The expression pattern of three ovarian carcinoma cell lines was examined. The analysis revealed the modulation of several genes in the two platinum-resistant cell lines as compared to parental platinum-sensitive cells. The integration of the information obtained through gene expression analysis may be useful to clarify the specific molecular alterations of factors and pathway favouring survival of tumor cells.

Publication Title

PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE147090
Effects of SPOP mutation in DU145 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We aimed at analyzing the transcriptome changes associated with SPOP mutation in DU145 cells

Publication Title

SPOP Deregulation Improves the Radiation Response of Prostate Cancer Models by Impairing DNA Damage Repair.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE11701
Genes modulated by miR-205 in DU145 prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v2.0 expression beadchip

Description

The study was aimed at identifying genes directly or indirectly regulated by miR-205 in the prostate. To this purpose, DU145 prostate cancer cells, which express miR-205 at very low levels, were transfected with miR-205 synthetic precursor and consequent alterations of gene expression analyzed using a microarray approach.

Publication Title

miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE104003
Analysis of transcriptome changes arising from MIR205HG modulation in prostate cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE103655
Effects of deletion of a portion of the Alu element from MIR205HG transcript
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We aimed at analyzing the transcriptome changes associated with the deletion of a portion of the Alu element from MIR205HG transcript

Publication Title

LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE103656
Effects of MIR205HG silencing
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

We aimed at analyzing the transcriptome changes associated with MIR205HG knock-down in RWPE-1 cells

Publication Title

LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact