refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 893 results
Sort by

Filters

Technology

Platform

accession-icon GSE10702
Gene expression profile of cervical and skin tissues from HPV 16 E6 transgenic mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Background

Publication Title

Gene expression profile of cervical and skin tissues from human papillomavirus type 16 E6 transgenic mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10360
Role of Endothelin in SCG axon pathfinding
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Sympathetic neurons of SCG (Superior Cervical Ganglia) send axonal projections either along the external carotid arteries to innervate the salivary glands, or along the internal carotid arteries to the lacrimal and pineal glands, the eye, blood vessels and skin of the head, and the mucosa of the oral and nasal cavities. Previous studies using Wnt1Cre and R26R have defined the neural crest and mesodermal origins of vascular smooth muscle in the heart outflow tract and great vessels, although not specifically of the segments that are relevant for the projections of the SCG neurons. The third pharyngeal arch arteries are lined by neural crest-derived smooth muscle, and consequently, their derivatives, including the entirety of the external carotid arteries and only the base of the internal carotid arteries, also have a neural crest origin. In contrast, the dorsal aortae are lined by smooth muscle that is mesodermal in origin, and as a result, the internal carotid arteries from just above their origination from the common carotid arteries have a mesoderm-derived smooth muscle layer. To address the possibility that guidance cues for SCG neurons are selectively expressed by the external carotid vs. the internal carotid arteries, we isolated these segments of the vasculature from mouse embryos at E13.5 and extracted RNA to screen microarrays for differentially expressed genes.

Publication Title

Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30391
Expression data from human Wharton's jelly stem cells
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human umbilical cord Whartons jelly stem cells (WHJSC) are gaining attention as a possible clinical source of mesenchymal stem cells for use in cell therapy and tissue engineering due to their high accessibility, expansion potential and plasticity. However, the cell viability changes that are associated to sequential cell passage of these cells are not known. In this analysis, we have identified the gene expression changes that are associated to cell passage in WHJSC.

Publication Title

Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-466
Transcription profiling of two populations of non-hematopoetic stem cells (MSC and MAPC) isolated from human bone marrow
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Compare the behaviour of two populations of non-hematopoetic stem cells (MSC and MAPC) isolated from human bone marrow. The effect of culture conditions on the behaviour of MSC was also characterised by isolating MSC and then culturing the cells for 96h in MAPC growth conditions

Publication Title

Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP170967
Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 752 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

X-chromosome inactivation (XCI) provides a dosage compensation mechanism where, in each female cell, one of the two X chromosomes is randomly silenced. However, some genes on the inactive X chromosome and outside the pseudoautosomal regions escape from XCI and are expressed from both alleles (escapees). We investigated XCI at single-cell resolution combining deep single cellRNA sequencing with whole-genome sequencing to examine allelic-specific expression in 935 primary fibroblast and 48 lymphoblastoid single cells from five female individuals. In this framework we integrated an original method to identify and exclude doublets of cells. In fibroblast cells, we have identified 55 genes as escapees including five novel escapee genes. Moreover, we observed that all genes exhibit a variable propensity to escape XCI in each cell and cell type and that each cell displays a distinct expression profile of the escapee genes. A metric, the Inactivation Score—defined as the mean of the allelic expression profiles of the escapees per cell—enables us to discover a heterogeneous and continuous degree of cellular XCI with extremes represented by “inactive” cells, i.e., cells exclusively expressing the escaping genes from the active X chromosome and “escaping” cells expressing the escapees from both alleles. We found that this effect is associated with cell-cycle phases and, independently, with the XIST expression level, which is higher in the quiescent phase (G0). Single-cell allele-specific expression is a powerful tool to identify novel escapees in different tissues and provide evidence of an unexpected cellular heterogeneity of XCI. Overall design: Single-cell RNA seq study on 935 human fibroblasts and 48 lymphoblastoid cells from 5 female individuals, in order to investigate the X chromosome nactivation mechanism on a single cell level and to identify escapee genes

Publication Title

Single cell transcriptome in aneuploidies reveals mechanisms of gene dosage imbalance.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE77540
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE77539
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Multiple myeloma (MM) remains incurable despite the introduction of novel agents and a relapsing course is observed in the majority of patients. Although the development of genomic technologies has greatly improved our understanding of MM pathogenesis, the mechanisms underlying relapse have been less investigated. In this study, an integrative analysis of DNA copy number, DNA methylation and gene expression was conducted in matched diagnosis and relapse samples from 17 MM patients. Overall, the acquisition of abnormalities at relapse was much more frequent than the lost of lesions present at diagnosis, and DNA losses were significantly more frequent at relapse than in diagnosis samples. Interestingly, copy number abnormalities involving more than 100 Mb of DNA at relapse significantly impact the gene expression of these samples, provoking a particular deregulation of IL-8 pathway. On the contrary, no relevant modifications of gene expression were observed in those samples with less than 100 Mb affected by chromosomal changes. Although different statistical approaches were used to uncover genes whose abnormal expression at relapse was regulated by DNA methylation, only two genes significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative methylation-expression correlation. A deeper analysis demonstrated that DNA methylation was involved in regulation of SORL1 expression in MM. Finally, relevant changes in gene expression observed in relapse samples, such us downregulation of CD27 and P2RY8, were not apparently preceded by alterations in corresponding DNA. Taken together, these results showed that genomic heterogeneity, both at the DNA and RNA level, is a hallmark of MM transition from diagnosis to relapse.

Publication Title

Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP044301
HSA21 Single-minded 2 (Sim2) binding sites co-localize with super-enhancers and pioneer transcription factors in pluripotent mouse ES cells [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Down syndrome (DS) results from trisomy of chromosome 21 (HSA21). Some DS phenotypes may be directly or indirectly related to the increased expression of specific HSA21 genes, in particular those encoding transcription factors. The HSA21 encoded Single-minded 2 (SIM2) transcription factor has key neurological functions and is a good candidate to be involved in the cognitive impairment of DS. ChIP-sequencing was used to map SIM2 binding in mouse embryonic stem cells and has revealed 1229 high-confidence SIM2-binding sites. Analysis of the SIM2 target genes confirmed the importance of SIM2 in developmental and neuronal processes and indicated that SIM2 may be a master transcription regulator. Indeed, SIM2 DNA binding sites share sequence specificity and overlapping domains of occupancy with master transcription factors such as SOX2, OCT4, NANOG or KLF4. The association between SIM2 and these pioneer factors is supported by the finding that SIM2 can be co-immunoprecipitated with SOX2, OCT4, NANOG or KLF4. Furthermore, the binding of SIM2 marks a particular sub-category of enhancers known as super-enhancers. These regions are characterized by typical DNA modifications and Mediator co-occupancy (MED1 and MED12). Altogether, we provide evidence that SIM2 binds a specific set of enhancer elements thus explaining how SIM2 can regulate its gene network in DS neuronal features. Overall design: RNA-Seq analysis in Sim2 expressing cells (3 replicates A6, B8, C4) and EB3 control cells (3 replicates)

Publication Title

HSA21 Single-Minded 2 (Sim2) Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29145
PKCz-mediated Gaq stimulation of the ERK5 pathway is involved in cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Gq-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gaq-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gaq acts as an adaptor protein that facilitates PKCz-mediated activation of ERK5 in epithelial cells. Since the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in Gq-dependent signaling in cardiac cells.

Publication Title

Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP095341
Loss of JNK in Breast Epithelium Accelerates Tumor Formation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Members of the JNK pathway have been found to be mutated in human breast cancer. Mouse studies examining JNK loss in different tissues have demonstrated that the JNK pathway can play a role in cancer. Using and autochthonous mouse model, we found that JNK deficiency on a p53-null background resulted in more rapid tumor onset. To learn more about these tumors we generated cells lines and performed various in vitro assays, as well as RNAseq in hope of finding differentially expressed genes that may explain the differences we observed in vivo. Overall design: Tumors were harvested from mice and cells lines were established from them. RNA was isolated from established tumor cell lines.

Publication Title

The cJUN NH<sub>2</sub>-terminal kinase (JNK) signaling pathway promotes genome stability and prevents tumor initiation.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact