refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 278 results
Sort by

Filters

Technology

Platform

accession-icon GSE39987
Oncogenic NRAS Signaling Differentially Regulates Survival and Proliferation in Melanoma.
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39984
Comparison of the genetic extinction of NRAS to pharmacological MEK inhibition in an inducible mouse model of melanoma
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Since direct pharmacological inhibition of RAS has thus far been unsuccessful, we explored system biology approaches to identify synergistic drug combination(s) that can mimic direct RAS inhibition. Leveraging an inducible mouse model of NRAS-mutant melanoma, we compare pharmacological MEK inhibition to complete NRAS-Q61K extinction in vivo. NRAS-Q61K extinction leads to a complete and durable tumor regression by enhancing both apoptosis and cell cycle arrest. By contrast, MEK inhibition only produces tumor stasis at best and we find that it robustly activates apoptosis but does not significantly impede proliferation.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39985
A timecourse analysis of the genetic extinction of NRAS in an inducible mouse model of melanoma.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We sought to understand the pathways involved in NRAS extinction over time using a doxycycline-dependent, inducible mouse model of melanoma. This data provides insights into the temporal dynamics of downstream NRAS signaling and helps to correlate differentially affected pathways.

Publication Title

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE9202
Expression data from mouse microvascular transcriptomes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Little is known about the pan-microvascular transcriptome, particularly considering gene transcripts and their encoded proteins that can be considered as vascular-selective in their expression.

Publication Title

Identification of a core set of 58 gene transcripts with broad and specific expression in the microvasculature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE103176
Gene and miRNA expression profiles in Polycythemia Vera and Essential Thrombocythemia according to CALR and JAK2 mutations
  • organism-icon Homo sapiens
  • sample-icon 130 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE103237
Gene and miRNA expression profiles in Polycythemia Vera and Essential Thrombocythemia according to CALR and JAK2 mutations [GEP]
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Polycythemia vera (PV) and essential thrombocythemia (ET) are Philadelphia-negative myeloproliferative neoplasms (MPNs) characterized by erythrocytosis and thrombocytosis, respectively. Approximately 95% of PV and 5070% of ET patients harbour the V617F mutation in the exon 14 of JAK2 gene, while about 20-30% of ET patients carry CALRins5 or CALRdel52 mutations. These ET CARL-mutated subjects show higher platelet count and lower thrombotic risk compared to JAK2-mutated patients. Here we showed that CALR-mutated and JAK2V617F-positive CD34+ cells have different gene and miRNA expression profiles. Indeed, we highlighted several pathways differentially activated between JAK2V617F- and CALR-mutated progenitors, i.e. mTOR, MAPK/PI3K and MYC pathways. Furthermore, we unveiled that the expression of several genes involved in DNA repair, chromatin remodelling, splicing and chromatid cohesion are decreased in CALR-mutated cells. According to the low risk of thrombosis in CALR-mutated patients, we also found the down-regulation of several genes involved in thrombin signalling and platelet activation. As a whole, these data support the model in which CALR-mutated ET could be considered as a distinct disease entity from JAK2V617F-positive MPNs and may provide the molecular basis supporting the different clinical features of these patients.

Publication Title

CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon SRP073461
Genomic deletion of malic enzyme 2 confers collateral lethality in pancreas cancer
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Comparison of malic enzyme 3 (ME3) depleted vs non-depleted xenograft tumors. ME3 is an isoform of ME2. Overall design: Sub-cutaneous tumors of nude mice injected with PATU-ishME3 (shRNA against ME3) and treated +/- Dox to knockdown ME3. 4 tumors off-dox and 2 tumors on-dox

Publication Title

Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE58307
Expression profiling of KRas ablation surviving cells and matched Kras expressing spheres in pancreatic tumors
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In this dataset, we include the expression data obtained from KRas expressing tumors, matched Kras expressing tumor spheres, surviving cells and surviving cells after KRas re-expression for 24hs

Publication Title

Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6420
Effect of LARK overexpression in CNS neurons
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

The goal of this study is to identify, in the head of adult flies, mRNA species whose expresson level are altered by overexpression of the Drosophila RNA-binding protein LARK in CNS neurons.

Publication Title

The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6418
RNAs associated with LARK in Drosophila pharate adult brain
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Circadian behaviors are regulated by intrinsic biological clocks consisting of central molecular oscillators and output pathways. Despite significant progress in elucidating the central timekeeping mechanisms, the molecular pathways coupling the circadian pacemaker to overt rhythmic behavior and physiology remain elusive. The Drosophila LARK RNA-binding protein is a candidate for such a coupling factor. Previous research indicates that LARK functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the Drosophila circadian system, we sought to identify RNA molecules associated with LARK in vivo, using a novel strategy that involves capturing the RNA ligands by immunoprecipitation, visualizing the captured RNAs using whole gene microarrays, and identifying functionally relevant targets through genetic screens.

Publication Title

The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact