refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 396 results
Sort by

Filters

Technology

Platform

accession-icon SRP015918
Influence of p38 MAPK (PMK-1) on the heat stress response of C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

PMK-1 is involved in the heat stress response of C. elegans, translocates to the nucleus upon heat exposure and influences the expression of chaperone genes, proteasomal subunits and protein-biosynthesis related genes. Overall design: Differential Gene expression of WT and pmk-1 deletion mutant (KU25) after 5 hours at 35°C

Publication Title

The p38 MAPK PMK-1 shows heat-induced nuclear translocation, supports chaperone expression, and affects the heat tolerance of Caenorhabditis elegans.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE56583
Effects of vitamin D supplementation on alveolar macrophage gene expression
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The objective of the overall study was to determine the effects of oral vitamin D supplementation on alveolar macrophages from human subjects. In this substudy, subjects treated with vitamin D (intervention group) in paired analysis had small, but significant effects on immune-related differential gene expression pre versus post supplementation.

Publication Title

Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE56426
Expression data from proximal jejunum of WT vs. TLR2 KO mice after methotrexate (MTX) treatment
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The role of innate immunity in modulating severity of chemotherapy-induced complications is so far unclear. The aim of this study was to determine how TLR2 may influence MTX-induced mucositis in the small intestine in mice. We used microarrays to assess gene expression profiles in proximal jejunum of WT vs. TLR2 KO mice after systemic treatment with MTX.

Publication Title

TLR signaling modulates side effects of anticancer therapy in the small intestine.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE27002
Chronic Cigarette Smoke Exposure Results in Coordinated Methylation and Gene Expression Changes in Human Alveolar Macrophages
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Cigarette smoking is the leading cause of emphysema in the United States. Alveolar macrophages play a critical role in the inflammation-mediated remodeling of the lung parenchyma in emphysema. However, the exact gene pathways and the role of DNA methylation in moderating this pathological transformation are not known. In order to more exactly understand this process, we compared genome-wide expression and methylation signatures of alveolar macrophages isolated from heavy smokers with those isolated from non-smoking controls. We found enrichment of differential methylation in genes from immune system and inflammatory pathways as determined by standard pathway analysis. Consistent with recent findings, significant methylation changes were particularly enriched in the areas flanking CpG islands (CpG shores). Analysis of matching gene expression data demonstrated a parallel enrichment for changes in immune system and inflammatory pathways. We conclude that alveolar macrophages from the lungs of smokers demonstrate coordinated changes in DNA methylation and gene expression that link to inflammation pathways. We suggest that further studies of DNA methylation in immune and inflammation-related gene expression are needed to understand the pathogenesis of emphysema and other smoking-related diseases.

Publication Title

Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP070946
Transcriptome of liver tissue in 5 week old Stabilin-1 knock-out mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Stabilin-1/CLEVER-1 is a multidomain protein present in lymphatic and vascular endothelial cells and in M2 immunosuppressive macrophages. Stabilin-1 functions in scavenging, endocytosis and leukocyte adhesion to and transmigration through the endothelial cells. Overall design: The transcriptome of liver tissue in 5wk old Stab1 knock-out mice was compared to that of corresponding wild type mice

Publication Title

Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon SRP055753
Mutational blows to Sox2+ cells induce epithelial squamous tumor initiation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cancer originates as the progressive accumulation of genetic mutations in proto-oncogenes and tumor suppressors. However, the early events underlying tumor initiation remain largely elusive, mostly due to the general lack of information regarding the cells-of-origin responsible for tumor formation as well as the precise impacts of genetic insults on tumor initiation in vivo. Here, we demonstrate that Sox2-positive (Sox2+) adult stem cells are responsible for epithelial squamous tumor formation. Conditional expression of oncogenic Kras (KrasG12D) and knockout of p53 (also known as Trp53) in Sox2+ cells quickly and specifically resulted in the formation of squamous tumors in the forestomach and esophagus. GFP-based lineage tracing experiments demonstrated that Sox2+ cells are the cells-of-origin of squamous tumors in the esophagus and forestomach. Of note, our data showed that p53 deletion alone did not suffice for tumor initiation. On the contrary, tumor initiation was observed upon KrasG12D activation whereas p53 deletion further contributed to the malignancy of the generated tumors, pointing out distinct roles for Kras activation and p53 deletion in squamous tumor formation and progression, to which a multihit carcinogenesis model can be applied. Global gene expression analysis revealed secreting factors upregulated in the generated tumors induced by oncogenic Kras, which contribute to tumor progression. Taken together, these results demonstrate that epithelial squamous tumors can specifically originate as a consequence of defined genetic mutations in a Sox2+ cell population and highlight the connections between proliferative stem cells and tumor development in vivo. Overall design: Expression profiling of mouse tissues with genetically induced tumors by RNA-Seq

Publication Title

Mutations in foregut SOX2<sup>+</sup> cells induce efficient proliferation via CXCR2 pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46600
Transcriptome and Molecular Pathways Analysis of CD4 T-Cells from Young NOD Mice
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Type 1 diabetes is a multigenic disease caused by T-cell mediated destruction of the insulin producing -cells. Although conventional (targeted) approaches of identifying causative genes have advanced our knowledge of this disease, many questions remain unanswered. Using a whole molecular systems study, we unraveled the genes/molecular pathways that are altered in CD4 T-cells from young NOD mice prior to insulitis (lymphocytic infiltration into the pancreas). Many of the CD4 T-cell altered genes lie within known diabetes susceptibility regions (Idd), including several genes in the diabetes resistance region Idd13 and two genes (Khdrbs1 and Ptp4a2) in the CD4 T-cell diabetogenic activity region Idd9/11. Alterations involved apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks), inflammation and cell signaling/activation (predominant at 3 weeks), and innate and adaptive immune responses (predominant at 4 weeks). We identified several factors that may regulate these abnormalities: IRF-1, HNF4A, TP53, BCL2L1 (lies within Idd13), IFNG, IL4, IL15, and prostaglandin E2, which were common to all 3 ages; AR and IL6 to 2 and 4 weeks; and Interferon (IFN-I) and IRF-7 to 3 and 4 weeks. Others were unique to the various ages (e. g. MYC, JUN, and APP to 2 weeks; TNF, TGFB1, NFKB, ERK, and p38MAPK to 3 weeks; and IL12 and STAT4 to 4 weeks). Our data suggest that diabetes resistance genes in Idd13 and Idd9/11, and BCL2L1, IL6-AR and IFNG-IRF-1-IFN-I/IRF-7-IL12 pathways play an important role in CD4 T-cells in the early pathogenesis of autoimmune diabetes. Thus, the alternative approach of investigation at the molecular systems level has captured new information, which combined with validation studies, offers the opportunity to test hypotheses on the role played by the genes/molecular pathways identified in this study, to understand better the mechanisms of autoimmune diabetes in CD4 T-cells, and to develop new therapeutic strategies for the disease.

Publication Title

Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE37450
Molecular Phenotyping of Immune Cells from Young NOD Mice
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse a model for human type 1 diabetes (T1DM). The molecular events leading to insulitis are poorly understood. Since TIDM is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease.

Publication Title

Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE36507
Gene expression in hypoxia-tolerant Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Hypoxia plays a key pathogenic role in the outcome of many pathologic conditions. To elucidate how organisms successfully adapt to hypoxia, a population of Drosophila melanogaster was generated, through an iterative selection process, that is able to complete its lifecycle at 4% O2, a level lethal to the starting parental population. Transcriptomic analysis of flies adapted for >200 generations was performed to identify pathways and processes that contribute to the adapted phenotype, comparing gene expression of three developmental stages with generation-matched control flies. A third group was included, hypoxia-adapted flies reverted to 21% O2 for five generations, to address the relative contributions of genetics and hypoxic environment to the gene expression differences. We identified the largest number of expression differences in 0.5-3 hr post-eclosion adult flies that were hypoxia-adapted and maintained in 4% O2, and found evidence that changes in Wnt signaling contribute to hypoxia tolerance in flies.

Publication Title

Wnt pathway activation increases hypoxia tolerance during development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE135463
Transcriptomic changes induced by Gsk-3-deletion in cerebellar progenitors
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Cerebellar development requires regulated proliferation of cerebellar granule neuron progenitors (CGNPs). Inadequate CGNP proliferation causes cerebellar hypoplasia while excessive CGNP proliferation can cause medulloblastoma, the most common malignant pediatric brain tumor. Although Sonic Hedgehog (SHH) signaling is known to activate CGNP proliferation, the mechanisms down-regulating proliferation are less defined. We investigated CGNP regulation by GSK-3, which down-regulates proliferation in the forebrain, gut and breast by suppressing mitogenic WNT signaling. In striking contrast, we found that co-deleting Gsk-3α and Gsk-3β blocked CGNP proliferation, causing severe cerebellar hypoplasia. Transcriptomic analysis showed activated WNT signaling and up-regulated Cdkn1a in Gsk-3-deleted CGNPs. These data show that a GSK-3/WNT axis modulates the developmental proliferation of CGNPs and the pathologic growth of SHH-driven medulloblastoma. The requirement for GSK-3 in SHH-driven proliferation suggests that GSK-3 may be targeted for SHH-driven medulloblastoma therapy.

Publication Title

GSK-3 modulates SHH-driven proliferation in postnatal cerebellar neurogenesis and medulloblastoma.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact