refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 73 results
Sort by

Filters

Technology

Platform

accession-icon GSE60747
Hey target gene regulation in murine ES cells and cardiomyocytes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60746
Hey target gene regulation in murine ES cells and cardiomyocytes [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4.

Publication Title

Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045743
Hey target gene regulation in murine ES cells and cardiomyocytes [high throughput sequencing]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Overall design: ES cells and cardiomyocytes with Hey1 or Hey2 overexpression were compared to control cells

Publication Title

Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6909
Differential gene expression in placentae (E10.5) from adra2bKO and adra2bWT mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

alpha2-adrenoceptors are essential presynaptic regulators of norepinephrine release from sympathetic nerves. Previous studies in mice with targeted deletions in the three alpha2-adrenoceptor genes have indicated that these receptors are essential for embryonic development. In the present study, we searched for the alpha2-adrenoceptor subtype(s) involved in placental development and its molecular mechanism using mice carrying targeted deletions in alpha2-adrenoceptor genes.

Publication Title

Upregulation of soluble vascular endothelial growth factor receptor 1 contributes to angiogenesis defects in the placenta of alpha 2B-adrenoceptor deficient mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP092592
Whole-transcriptome profiling of neovascularized corneas reveal miR-204 as a potent biotherapy deliverable by rAAVs [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Current drugs that directly target pro-angiogenic factors to inhibit or reverse corneal neovascularization, the major sight-threatening pathology caused by angiogenic stimuli, require multiple rounds of administration and have limited efficacies. Here we report the profiling of anti-angiogenic corneal microRNAs (miRNAs), and a framework that employs discovered miRNAs as biotherapies deliverable by recombinant adeno-associated viruses (rAAVs). By querying differentially expressed miRNAs in neovascularized mouse corneas induced by alkali-burn, we have revealed 39 miRNAs that are predicted to target more than 5,500 differentially expressed corneal mRNAs. Among these corneal miRNAs, we selected miR-204 and assessed its efficacy as a therapeutic miRNA in injured corneas. Our results show that delivery of miR-204 by rAAV is efficacious and safe for mitigating corneal NV. Overall, our work demonstrates the discovery of therapeutic miRNAs in corneal disorders and their translation into viable clinical vectors. Overall design: Profiling of mRNAs in normal mouse corneas and corneas injured by alkali burn treatment.

Publication Title

Transcriptome Profiling of Neovascularized Corneas Reveals miR-204 as a Multi-target Biotherapy Deliverable by rAAVs.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE11864
Effect of interferon-gamma on macrophage differentiation and response to Toll-like receptor ligands
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis of freshly isolated CD14+ human monocytes and monocytes cultured in the presence or absence of interferon (IFN) -gamma for 24 h and then stimulated with Pam3Cys, a Toll-like receptor (TLR) 2 ligand, for 6 h. Results provide insight into mechanisms by which IFN-gamma reprograms early macrophage differentiation and subsequent response to TLR ligands.

Publication Title

Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45627
MiR-221 mediated gene expression in human PCa cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MiR-221 overexpression leads to activation of apoptosis, growth arrest and reduced invasivness in PCa cells. Interaction of miR-221 with potential target genes was analyzed by a genome wide expression profiling.. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real Time RT-PCR assay (IRF1, IRF2 SOCS3, STAT1), and Western Blotting. In total, 282 genes were upregulated and 64 downregulated based on a more than 2-fold difference to untransfected PC-3 cells. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, tumorigenesis and inflammation. We confirmed dysregulation of IRF-2 SOCS3, STAT1,IRF9. These results indicate that miR-221 overexpression might lead to activation of the JAK/STAT pathway and downregulation of miR-221 might contribute to tumorigenesis in PCa cells.

Publication Title

Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE53224
Gene expression data from Wilms tumor samples
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Wilms tumor (nephroblastoma) is a pediatric kidney tumor that arises from renal progenitor cells. Since the blastemal type is associated with adverse prognosis, we characterized such Wilms tumors by exome and transcriptome analysis. We detected novel, recurrent somatic mutations affecting the SIX1/2 SALL1 pathway implicated in kidney development, the DROSHA/DGCR8 microprocessor genes as well as alterations in MYCN and TP53, the latter being strongly associated with dismal outcome. The DROSHA mutations impair the RNase III domains, while DGCR8 exhibits stereotypic E518K mutations in the RNA binding domain - both may skew miRNA representation. SIX1 and SIX2 mutations affect a single hotspot (Q177R) in the homeodomain indicative of a dominant effect. In larger cohorts, these mutations cluster in blastemal and chemotherapy-induced regressive tumors that likely derive from blastemal cells and these are characterized by generally higher SIX1/2 expression. These findings broaden the spectrum of human cancer genes and may open new avenues for stratification and therapeutic leads for Wilms tumors.

Publication Title

Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE29417
A new mouse model for mania shares genetic correlates with human bipolar disorder.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Bipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain, termed Madison (MSN), which naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Using a novel genomic enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.

Publication Title

A new mouse model for mania shares genetic correlates with human bipolar disorder.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35713
Transcriptional Signatures as a Disease-Specific and Predictive Inflammatory Biomarker for Type 1 Diabetes
  • organism-icon Homo sapiens
  • sample-icon 202 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact