refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE68450
Embryonic sensory thalamus nuclei-specific genes revealed by genetic labelling and FACS isolation
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To identify genes expressed in specific developing thalamic nuclei during embryonic stages, a genetic dual labelling strategy was established to mark and isolate the cells. Transcription profiles were determined for the principal sensory thalamic populations by genome-wide analysis.

Publication Title

Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79683
Expression data from thalamic dLGN nucleus in control and Sema6A knock-out mice at P0
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Misguided visual thalamic axons leads to changes in gene expression in visual thalamic neurons.

Publication Title

Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76767
Expression data from thalamic nuclei in control and bilateral enucleated mice at P0 and P4
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Elimination of peripheral retinal axons leads to changes in gene expression in both visual and somatosensory thalamic neurons.

Publication Title

Prenatal thalamic waves regulate cortical area size prior to sensory processing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP034547
Human CLP1 mutations alter tRNA biogenesis affecting both peripheral and central nervous system function
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We elucidate a neurological syndrome affecting both the PNS and CNS defined by CLP1 mutations that impair tRNA splicing Overall design: Identification and biochemical characterization of mutant CLP1 in human patients

Publication Title

Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact