refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 153 results
Sort by

Filters

Technology

Platform

accession-icon SRP053366
Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Phospholamban R14del mutazion (PLN-R14del) has been identified in a large family pedigree in which heterozygous carriers exhibited inherited dilated cardiomyopathy (DCM) and death by middle age. To better understand the causal link between the mutations in PLN and DCM pathology, we derived induced pluripotent stem cells from a DCM patient carrying the PLN R14del mutation. We showed that iPSC-derived cardiomyocytes recapitulated the DCM-specific phenotype and demonstrated that either TALEN-mediated genetic correction or combinatorial gene therapy resulted in phenotypic rescue. Our findings offer novel insights into the pathogenesis caused by mutant PLN and point to the development of potential new therapeutics of pathogenic genetic variants associated with inherited cardiomyopathies. Overall design: iPSCs were derived from a female patient carrying a heterozygous mutation (R14del) in the PLN gene. Tree samples were analyzed: Cardiomyocytes derived from PLN-R41del iPSC cells (R14del-CM); R14del-CMs infected with AAV6-EGFP-miR-PLN and R14del-CMs infected with AAV6-EGFP-miR-luc used as a negative control

Publication Title

Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP139120
Transcriptome-wide identification of transient RNA G-quadruplexes in human cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report here on G4RP-seq, which comprises of a cross-linking step, followed by chemical-affinity capture with the G4-specific small-molecule, BioTASQ and target identification using sequencing. This allows for capturing global snapshots of relative average levels of transiently folded G4-RNAs. We observed widespread G4-RNA targets indicative of transient G4 formation in several RNA entities in living human cells. G4RP-seq has also demonstrated that G4-stabilizing ligands (BRACO-19 and RHPS4) can change the G4 transcriptomic landscape, most notably in long non-coding RNAs. G4RP-seq thus provides a proof-of-principle for studying the G4-RNA landscape, as well as new ways of considering the mechanisms underlying G4-RNA formation and the activity of G4-stabilizing ligands. Overall design: Two BioTASQ-enriched samples and one input control for three different conditions (Untreated, BRACO-19-treated, and RHPS4-treated) in MCF7 cells

Publication Title

Transcriptome-wide identification of transient RNA G-quadruplexes in human cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE50899
Expression data from fission yeast Schizosaccharomyces pombe under nitrosative stress
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Nitric oxide being a versatile molecule inside biological systems, from being both a cell signaling molecule to a potent stress agent, has significant effect in the transcriptional response in fission yeast.

Publication Title

Global transcriptomic profiling of Schizosaccharomyces pombe in response to nitrosative stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68944
Expression data from sound vibration-treated Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Sound vibration (SV) causes various developmental and physiological changes in plants. It strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signaling in plants. However, the underlying molecular mechanism of SV-mediated plant responses remains elusive. Herein, we investigated the transcript changes in Arabidopsis thaliana upon five different single frequencies of SV treatment.

Publication Title

Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP141198
Potential role of gas6 in zebrafish hindbrain development
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

identification of differentially expressed genes in gas6 homozygous mutant hindbrain when compared to wildtype hindbrain in zebrafish Overall design: Total RNA was extracted from dissected hindbrain of gas6 homzygous mutants and wildtype embryos at 48hpf using the RNeasy Mini Kit (Qiagen). Three libraries from wildtype embryos and three libraries from gas6 mutants were then generated from 3mg RNA using the TruSeq Stranded mRNA Library Prep Kit (Illumina). All libraries were analyzed for quality on a bioanalyzer prior to sequencing (Agilent 2100 BioAnalyzer).

Publication Title

Analysis of novel caudal hindbrain genes reveals different regulatory logic for gene expression in rhombomere 4 versus 5/6 in embryonic zebrafish.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE16098
Genome-wide analysis of genes regulated transcriptionally and post-transcriptionally by HTLV-I p30
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The Human T-cell Leukemia Virus (HTLV)-type-I non-structural protein p30 plays an important role in virus transmission and gene regulation. p30 has been documented to inhibit the export of certain viral mRNA transcripts from the nucleus to the cytoplasm. This nuclear retainment of RNA molecules essentially results in gene silencing, where protein products are not produced.

Publication Title

Genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53732
Conserved nutrient sensor O-GlcNAc transferase is integral to the C. elegans pathogen-specific immune response
  • organism-icon Caenorhabditis elegans
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Discriminating pathogenic bacteria from energy-harvesting commensals is key to host immunity. Using mutants defective in the enzymes of O-linked N-acetylglucosamine (O-GlcNAc) cycling, we examined the role of this nutrient-sensing pathway in the Caenorhabidits elegans innate immune response. Using whole genome transcriptional profiling, O-GlcNAc cycling mutants exhibited deregulation of unique stress- and immune-responsive genes as well as genes shared with the p38 MAPK/PMK-1 pathway. Moreover, genetic analysis showed that deletion of O-GlcNAc transferase (ogt-1) yielded animals hypersensitive to the human pathogen S. aureus but not to P. aeruginosa. Genetic interaction studies further revealed that nutrient-responsive OGT-1 acts through the conserved -catenin (BAR-1) pathway and in concert with p38 MAPK/PMK-1 to modulate the immune response to S. aureus. The participation of the nutrient sensor O-GlcNAc transferase in an immunity module conserved from C. elegans to humans reveals an unexplored nexus between nutrient availability and a pathogen-specific immune response.

Publication Title

Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE17584
Transcriptional effects of CRP* expression in Escherichia coli
  • organism-icon Escherichia coli
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) alleviates diauxic effects in E. coli and enables co-utilization of glucose and other sugars. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression.

Publication Title

Transcriptional effects of CRP* expression in Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25014
Gene expression data of endothelium exposed to heme
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Sickle cell disease is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events cause endothelial dysfunction and vasculopathies in multiple systems

Publication Title

Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE32285
Genome-wide analysis of lupus immune complex stimulation and how this response is regulated by C1q
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact