refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 152 results
Sort by

Filters

Technology

Platform

accession-icon GSE118022
Co-evolution of Met amplification and Hgf overexpression mediate resistance to BRAF inactivation in mouse anaplastic thyroid cancers.
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Affymetric arrays were performed on thyroid samples collected from GEMMs: normal thyroid, TPO-Cre/LSL-Braf (PTC), TPO-Cre/tetO-BRAF/LSL-rtTAiresGFP/p53-flox (ATC) and TPO-Cre/tetO-BRAF/LSL-rtTAiresGFP/p53-flox (recurrent tumors)

Publication Title

Hgf/Met activation mediates resistance to BRAF inhibition in murine anaplastic thyroid cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76039
Genomic and Transcriptomic Hallmarks of Poorly-Differentiated and Anaplastic Thyroid Cancers
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BACKGROUND. Poorly-differentiated (PDTC) and anaplastic (ATC) thyroid cancers are rare and frequently lethal tumors, which so far have not been subjected to comprehensive genetic characterization. METHODS. We performed next generation sequencing of 341 cancer genes in 117 PDTCs and ATCs, and a transcriptomic analysis of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas (TCGA) study of papillary thyroid cancers (PTC). RESULTS. ATCs have a greater mutation burden than PDTCs, and higher mutation frequency of TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits and histone methyltransferases. BRAF and RAS are the predominant drivers, and dictate remarkably distinct tropism for nodal vs. distant metastases in PDTC. RAS and BRAF sharply distinguish between PDTCs defined by the Turin (PDTC-Turin) vs. MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, are markedly enriched in PDTCs and ATCs, and have a striking pattern of co-occurrence with RAS. TERT promoter mutations are rare and subclonal in PTCs, whereas they are clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) shows a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs are BRAF-like irrespective of driver mutation. CONCLUSIONS. These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared to PDTC underscore their greater virulence and higher mortality.

Publication Title

Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE13601
Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Background: The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling. Methods: The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG_U95Av2 high-density oligonucleotide arrays. Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, MMP-1 encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). The 20 patients were then grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, GLUT3, HSAL2, and PACE4, were selected for their potential biological significance in a larger cohort of 49 patients by quantitative real-time RT-PCR. Results: Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of GLUT3, HSAL2 and PACE4, respectively. Univariate analyses demonstrated that GLUT3 over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). HSAL2 was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.0467). In survival studies, only GLUT3 showed a prognostic value with disease-specific (P=0.049), relapse-free (P-0.0042) and overall survival (P=0.003). PACE4 mRNA expression failed to show correlation with any of the relevant parameters. Conclusions: The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by real-time RT-PCR offers a powerful strategy for identification of novel targets for prognostication and treatment of oral tongue carcinoma.

Publication Title

Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP047251
AXL mediates resistance to PI3Ka inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

Phosphoinositide-3-kinase (PI3K)-a inhibitors are clinically active in squamous carcinoma (SCC) of the head and neck (H&N) bearing mutations or amplification of PIK3CA. We aimed to identify potential mechanism of resistance and have observed that SCCs cells overcome the antitumor effects of the PI3Ka inhibitor BYL719 by maintaining PI3K-independent activation of the mammalian target of rapamycin (mTOR). The persistent mTOR activation is mediated by the tyrosine kinase receptor AXL. We found that AXL is overexpressed in resistant tumors, dimerizes with the epidermal growth factor receptor (EGFR), phosphorylates EGFR tyrosine 1173, resulting in activation of phospholipase C? (PLC?)- protein kinase C (PKC) that, in turn, activates mTOR. Finally, simultaneous treatment with PI3Ka and either EGFR, AXL or PKC inhibitors reverts this resistance. Overall design: RNAseq from acquired resistant cells CAL33B, K180B were compared to their parental counterpart CAL33 and K180, respectively. K180 is a shortcut of KYSE180, and B stands for BYL719. Duplicate of parental sensitive cells and K180B, and triplicate for CAL33B.

Publication Title

AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50899
Expression data from fission yeast Schizosaccharomyces pombe under nitrosative stress
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Nitric oxide being a versatile molecule inside biological systems, from being both a cell signaling molecule to a potent stress agent, has significant effect in the transcriptional response in fission yeast.

Publication Title

Global transcriptomic profiling of Schizosaccharomyces pombe in response to nitrosative stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68944
Expression data from sound vibration-treated Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Sound vibration (SV) causes various developmental and physiological changes in plants. It strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signaling in plants. However, the underlying molecular mechanism of SV-mediated plant responses remains elusive. Herein, we investigated the transcript changes in Arabidopsis thaliana upon five different single frequencies of SV treatment.

Publication Title

Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP141198
Potential role of gas6 in zebrafish hindbrain development
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

identification of differentially expressed genes in gas6 homozygous mutant hindbrain when compared to wildtype hindbrain in zebrafish Overall design: Total RNA was extracted from dissected hindbrain of gas6 homzygous mutants and wildtype embryos at 48hpf using the RNeasy Mini Kit (Qiagen). Three libraries from wildtype embryos and three libraries from gas6 mutants were then generated from 3mg RNA using the TruSeq Stranded mRNA Library Prep Kit (Illumina). All libraries were analyzed for quality on a bioanalyzer prior to sequencing (Agilent 2100 BioAnalyzer).

Publication Title

Analysis of novel caudal hindbrain genes reveals different regulatory logic for gene expression in rhombomere 4 versus 5/6 in embryonic zebrafish.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE53732
Conserved nutrient sensor O-GlcNAc transferase is integral to the C. elegans pathogen-specific immune response
  • organism-icon Caenorhabditis elegans
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Discriminating pathogenic bacteria from energy-harvesting commensals is key to host immunity. Using mutants defective in the enzymes of O-linked N-acetylglucosamine (O-GlcNAc) cycling, we examined the role of this nutrient-sensing pathway in the Caenorhabidits elegans innate immune response. Using whole genome transcriptional profiling, O-GlcNAc cycling mutants exhibited deregulation of unique stress- and immune-responsive genes as well as genes shared with the p38 MAPK/PMK-1 pathway. Moreover, genetic analysis showed that deletion of O-GlcNAc transferase (ogt-1) yielded animals hypersensitive to the human pathogen S. aureus but not to P. aeruginosa. Genetic interaction studies further revealed that nutrient-responsive OGT-1 acts through the conserved -catenin (BAR-1) pathway and in concert with p38 MAPK/PMK-1 to modulate the immune response to S. aureus. The participation of the nutrient sensor O-GlcNAc transferase in an immunity module conserved from C. elegans to humans reveals an unexplored nexus between nutrient availability and a pathogen-specific immune response.

Publication Title

Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE17584
Transcriptional effects of CRP* expression in Escherichia coli
  • organism-icon Escherichia coli
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) alleviates diauxic effects in E. coli and enables co-utilization of glucose and other sugars. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression.

Publication Title

Transcriptional effects of CRP* expression in Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25014
Gene expression data of endothelium exposed to heme
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Sickle cell disease is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events cause endothelial dysfunction and vasculopathies in multiple systems

Publication Title

Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact