refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 128 results
Sort by

Filters

Technology

Platform

accession-icon SRP098047
Characterization of murine pulmonary interstitial macrophages at steady state
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

In this study we demonstrate that the lung mononuclear phagocyte system comprises three interstitial macrophages (IMs), as well as alveolar macrophages (AMs), dendritic cells and few extravascular monocytes. Through cell sorting and RNAseq analysis we were able to identify transcriptional similarities and differences between the three pulmonary IM subtypes, with reference to the more well-characterized alveolar macrophage Overall design: Pulmonary Interstitial and Alveolar macrophages were FACS sorted from the lungs of steady state 8-10 week old B6 mice, in triplicate. Extracted RNA was examined by RNAsequencing. The tar archive GSE94135_jakubzick_2019*tar available at the foot of this page contains the supplementary processed data used for comparisons with data in GSE132911. Data were processed as described in GSE132911.

Publication Title

Three Unique Interstitial Macrophages in the Murine Lung at Steady State.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP099085
Comparing murine lung resident alveolar Siglec-F(high) macrophages to CD11b(high) macrophages following bleomycin injury
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Macrophages (MF) have been shown to contribute to fibrogenesis, however the underlying mechanisms and specific MF subsets involved remain unclear. Lung MF can be divided into two subsets: Siglec-Fhi resident alveolar MF and CD11bhi MF that primarily arise from immigrating monocytes. RNA-seq analysis was performed to compare these MF subsets during fibrosis. CD11bhi MF, not Siglec-Fhi MF, expressed high levels of pro-fibrotic chemokines and growth factors. Overall design: C56BL/6 WT mice were treated intratracheally with bleomycin. 8 days later, CD64+Mertk+ MF were sorted into Siglec-F(high) and CD11b(high) subsets. SiglecF(high) MF from naïve mice were also sorted. RNA was isolated and RNA-seq was performed to compare MF subsets.

Publication Title

Deletion of c-FLIP from CD11b<sup>hi</sup> Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE100415
Placental gene expression profiling for the identification of subtypes of human fetal growth restriction
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Fetal growth restriction (FGR) is a heterogeneous disorder of pregnancy associated with pathologically low fetal and neonatal weights. We hypothesized that FGR consists of multiple placental subtypes, similar to what we have observed in preeclampsia. To address this hypothesis, we assembled a fetal growth-focused human placental microarray data set (N=97) consisting of 20 new normotensive suspected FGR samples (below), in addition to term controls (N=26) and hypertensive suspected FGR samples (N=51) from GSE75010.

Publication Title

Placental transcriptional and histologic subtypes of normotensive fetal growth restriction are comparable to preeclampsia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP095529
TP53 modulates oxidative stress in Gata1+ erythroid cells
  • organism-icon Danio rerio
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

In this report, we have found that gata1 expressing erythroid cells contribute to a significant proportion of total body oxidative stress when animals were exposed to a strong pro-oxidant. RNA-seq of zebrafish under oxidative stress revealed the induction of tp53. Zebrafish carrying tp53 with mutation in its DNA binding domain were acutely sensitive to pro-oxidant exposure and displayed significant reactive oxygen species (ROS) and tp53-independent erythroid cell death resulting in an edematous phenotype. We found that a major contributing factor to ROS was increased basal mitochondrial respiratory rate without reserve. These data add to the concept that tp53, while classically a tumor suppressor and cell cycle regulator, has additional roles in controlling cellular oxidative stress. Overall design: We performed RNA-seq in two experiments. (1) Wild-type zebrafish embryos were exposed to 1-naphthol (vs no exposure) from 24 - 72 hpf (n = 5/group). (2) tp53 mutant zebrafish embryos were exposed to 1-naphthol (vs no exposure) from 24 - 72 hpf (n = 5/group).

Publication Title

TP53 Modulates Oxidative Stress in Gata1<sup>+</sup> Erythroid Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35473
Influenza virus A infected monocytes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Gene expression profiles 6 hours post-influenza A virus infection in human monocytes at multiplicities of infection of 10 versus uninfected monocytes

Publication Title

Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP014662
A comprehensive view of the transcriptome during development of the mouse cerebral cortex
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The complexity of the mature adult brain is a result of both developmental processes and experience-dependent circuit formation. One way to look at the process of brain development is to examine gene expression changes, and previous studies have used microarrays to address this in a global manner. However, the transcriptome is more complex than gene expression levels alone, as both alternative splicing and RNA editing occur to generate a more diverse set of mature transcripts. The aim of the current study was to develop a high-resolution transcriptome dataset of mouse cortical development using RNA sequencing (RNA-Seq), thus assaying exon usage and RNA editing as well as overcoming some of the inherent limitations of microarrays. We found a large number of differentially expressed genes, but also altered splicing and RNA editing between embryonic and adult cerebral cortex. Each dataset was validated both technically and biologically, and in each case tested we found our RNA-Seq observations to have high predictive validity. We propose this dataset, and the accompanying analysis, to be a helpful resource in the understanding of changes in gene expression during development. Overall design: Three young adult cerebral cortices four embryonic cerebral cortices

Publication Title

mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE59394
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE59392
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network [expression]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In embryonic stem cell (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors that regulate the ESC state are not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 Ubiquitin Ligase Protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses revealed that MKRN1 is a novel RNA-binding protein that exists within messenger ribonucleoprotein (mRNP) complexes in undifferentiated ESC populations. In accordance with its presence in mRNPs, MKRN1 is mobilized to stress granules (SG) upon arsenite-induced stress, yet MKRN1 is not required for SG formation. RIP-chip analysis revealed that MKRN1 associates with mRNAs encoding functionally related regulatory proteins involved in diverse processes such as cell differentiation, apoptosis, or secreted proteins. Thus, our unbiased systems level analyses supports a role for MKRN1 as a novel RNA-binding protein and a potential gene regulatory protein within the ESC GRN.

Publication Title

Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE59393
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network [RIP-chip]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In embryonic stem cell (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors that regulate the ESC state are not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 Ubiquitin Ligase Protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses revealed that MKRN1 is a novel RNA-binding protein that exists within messenger ribonucleoprotein (mRNP) complexes in undifferentiated ESC populations. In accordance with its presence in mRNPs, MKRN1 is mobilized to stress granules (SG) upon arsenite-induced stress, yet MKRN1 is not required for SG formation. RIP-chip analysis revealed that MKRN1 associates with mRNAs encoding functionally related regulatory proteins involved in diverse processes such as cell differentiation, apoptosis, or secreted proteins. Thus, our unbiased systems level analyses supports a role for MKRN1 as a novel RNA-binding protein and a potential gene regulatory protein within the ESC GRN.

Publication Title

Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE45462
Molecular Signatures of Muscle Rehabilitation After Limb Disuse
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have identified the molecular (transcriptional) signatures associated with muscle remodeling in response to rehabilitation in a patient cohort. Subjects with a closed malleolus fracture treated conservatively with 6 weeks of cast immobilization are recruited. Then subjects are enrolled in a 6 weeks structured rehabilitation program focusing on progressive resistance training of the ankle plantar flexor muscles. Phenotypic measurements are performed before (pre-rehab), during (mid-rehab, 3 weeks) and immediately after (post-rehab, 6 weeks) the rehabilitation intervention. The maximal cross-sectional area (muscle size) and peak torque (muscle strength) are quantified using isometric and isokinetic tests in combination with 3D-magnetic resonance imaging. Ankle plantar flexor muscle size and strength measurements are also performed on the uninvolved limb (serves as a control) at 4 months post-immobilization. Measurements are also acquired from the contralateral leg, which serves as an internal control.

Publication Title

Molecular signatures of differential responses to exercise trainings during rehabilitation.

Sample Metadata Fields

Sex, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact