refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 26 results
Sort by

Filters

Technology

Platform

accession-icon GSE6011
Expression data from quadriceps muscle of young DMD patients and age matched controls
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Albeit increased serum CK level and abnormal muscle histology are always present, boys with DMD are phenotipically indistinguishable from the normal ones at birth and, in their first years of life, acquire early motor milestones at normal times. A clear defect in muscle function becomes generally apparent by the end of the second year. As the disease is typically diagnosed between the ages of 3 and 7, the first two years are often considered and referred to as clinically presymptomatic.

Publication Title

Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE117935
Whole transcriptome analysis of circulating B cells from multiple sclerosis (MS) patients and healthy donors (HD)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Whole transcriptome analysis of circulating B cells from multiple sclerosis (MS) patients and healthy donors (HD).

Publication Title

Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE6357
Activation of human CD8+ T cells in renal cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

BACKGROUND: Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyse these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells.

Publication Title

miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Subject, Time

View Samples
accession-icon GSE17684
Widespread over-expression of the X chromosome in sterile F1 hybrid mice
  • organism-icon Mus musculus, Mus musculus domesticus, Mus musculus musculus x m. m. domesticus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used a reciprocal cross of Mus musculus and M. domesticus in which F1 males are sterile in one direction and fertile in the other direction, in order to associate expression differences with sterility.

Publication Title

Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16623
Differential gene expression between ERRa KO and WT mouse kidneys
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Estrogen-related receptor (ERR) alpha is an orphan nuclear receptor highly expressed in the kidneys. ERRalpha is implicated in renal sodium and potassium homeostasis and blood pressure regulation. We used microarray analysis to identify differentially expressed genes in ERR alpha knockout mice kidneys versus wild-type. The results provide insight on the roles of ERRalpha in the kidney.

Publication Title

Physiological genomics identifies estrogen-related receptor alpha as a regulator of renal sodium and potassium homeostasis and the renin-angiotensin pathway.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP081167
Transcriptomic profiles of intestinal stem cells cultured in natural and synthetic three-dimensional matrices
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We used RNA-seq to define the gene expression profiles of intestinal stem cells (ISCs) expanded in Matrigel, degradable poly(ethylene) glycol (PEG) and non-degradable PEG matrices. Comparison of mRNA profiles between ISCs grown in Matrigel and non-degradable PEG show no major differences in expression of gene related to stemness, proliferation and signaling via the Wnt and Notch pathways. These results also show that ISC cultured in degradable PEG matrices upregulate stress- and inflammation-related genes compared with cells expanded in non-degradable PEG matrices. Overall design: mRNA profiles of ISCs cultured in the three types of matrices for 4 days were generated in triplicate

Publication Title

Designer matrices for intestinal stem cell and organoid culture.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE75877
The PGC-1/ERR Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-Folate Therapy in Breast Cancer
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE7196
Differential gene expression between WT and ERRa-null hearts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Total RNA was isolated from 3 WT and 3 ERRa null hearts and independent hybridizations were performed using MOE430 2.0 microarrays. Expression profiling was conducted to determine changes in gene expression in hearts lacking ERRa. The expression of genes involved in heart and muscle development, muscle contraction, lipid metabolism, OxPhos, protein metabolism and transcription were affected by the loss of ERRa.

Publication Title

Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE75727
The PGC-1/ERR Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-Folate Therapy in Breast Cancer [Microarray expression]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Reprogramming of cellular metabolism plays a central role in fuelling malignant transformation, and AMPK as well as the PGC-1/ERR axis are key regulators of this process. Intersection of gene expression and binding event datasets in breast cancer cells shows that activation of AMPK significantly increases the expression of PGC-1/ERR and promotes the binding of ERR to its cognate sites. Unexpectedly, the data also reveal that ERR, in concert with PGC-1, negatively regulates the expression of several one-carbon metabolism genes resulting in substantial perturbations in purine biosynthesis. This PGC-1/ERR-mediated repression of one-carbon metabolism promotes the sensitivity of breast cancer cells and tumors to the anti-folate drug methotrexate. These data implicate the PGC-1/ERR axis as a core regulatory node of folate cycle metabolism and further suggest that activators of AMPK could be used to modulate this pathway in cancer.

Publication Title

The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP072996
RNA-seq of Lmnb1-/- and Lmnb1+/- olfactory lineages
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Lamins, the major components of the nuclear lamina, have diverse functions in many cellular processes. Despite broad expression, lamins have been implicated in cell type-specific roles in development, aging and disease by regulating gene expression. Yet, due to the lack of in depth lineage-specific functional studies, it remains unclear whether or how lamins regulate cell type-specific functions. Using targeted knockout of lamin B1 in the olfactory sensory neuron lineage, we show that lamin B1 is not required for early stages of olfactory sensory neuron differentiation but is needed for formation of mature neurons that properly respond to odor stimulation. Lamin B1 mutant cells exhibited decreased expression of genes involved in mature neuron function, increased expression of genes atypical of the olfactory lineage and clustered nuclear pore distribution. These results demonstrate that the universally expressed lamin B1 regulates cell type-specific gene expression and terminal differentiation. Overall design: Transcriptome profiles were generated from sorted regenerated olfactory epithelium cells lacking Lamin B1 (Lmnb1) and control (heterozygous cells). Each sample is collected from one mouse. Data are from two experimental groups (G1,G2), each containing a control and a mutant sample. Different groups differ in treatment, parents, age and sex. Within a group, treatment, sample preparation, sequencing, animal sex, age, and parents are the same.

Publication Title

Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact