refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 454 results
Sort by

Filters

Technology

Platform

accession-icon GSE62090
Gene expression profiling of human Ewing sarcoma cells after knockdown of EGR2 or EWSR1-FLI1.
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

To get insight in the functional role of EGR2 for Ewing sarcoma, we performed a transcriptional profiling of Ewing sarcoma cells after knockdown of EGR2 and compared the resulting transcriptional signature with that of EWSR1-FLI1-silenced Ewing sarcoma cells. In accordance with the strong EGR2-induction by EWSR1-FLI1, both genes highly significantly overlap in their transcriptional signatures. Gene-set enrichment analyses (GSEA) and DAVID (Database for Annotation, Visualisation and Integrated Discovery) gene ontology analyses indicated a strong impact of EGR2 on cholesterol and lipid biosynthesis resembling its function in orchestrating lipid metabolism of myelinating Schwann cells.

Publication Title

Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE60578
Regulatory logic of the coupled diurnal and feeding cycles in the mouse liver
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This study is a follow-up to GSE35790.

Publication Title

Transcriptional regulatory logic of the diurnal cycle in the mouse liver.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE35790
Kinetic RNA polymerase II occupancy, associated histone marks, and mRNA accumulation reveal transcriptional and post-transcriptional mechanisms underlying circadian gene expression
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35789
Transcription profiling of mouse liver cells during the circadian cycle at 4 hour time resolution
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Cyclic regulatory systems are ubiquitous in cells and tissues. In the liver rhythms in mRNA expression are determined by the homeostatic regulation that operates on daily circumstances. In particular the specific response to nutrients, as well as systemic and peripheral circadian oscillators, contribute to the set up of the hepatic homeostasis at different phases of the day. In this series we used microarrays to detail the global program of gene expression in the mouse liver under physiological daily variations, determined by both the feeding and the circadian cycles.

Publication Title

Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26212
The effects of EBV transformation on gene expression and methylation levels
  • organism-icon Homo sapiens
  • sample-icon 82 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The effects of EBV transformation on gene expression levels and methylation profiles.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE58942
The effect of freeze-thaw cycles on gene expression levels in lymphoblastoid cell lines
  • organism-icon Homo sapiens
  • sample-icon 187 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs) are a widely used renewable resource for functional genomic studies in humans. The ability to accumulate multidimensional data pertaining to the same individual cell lines, from complete genomic sequences to detailed gene regulatory profiles, further enhances the utility of LCLs as a model system. However, the extent to which LCLs are a faithful model system is relatively unknown. We have previously shown that gene expression profiles of newly established LCLs maintain a strong individual component. Here, we extend our study to investigate the effect of freeze-thaw cycles on gene expression patterns in mature LCLs, especially in the context of inter-individual variation in gene regulation. We found a profound difference in the gene expression profiles of newly established and mature LCLs. Once newly established LCLs undergo a freeze-thaw cycle, the individual specific gene expression signatures become much less pronounced as the gene regulatory programs in LCLs from different individuals converge to a more uniform profile, which reflects a mature transformed B cell phenotype. As expected, previously identified eQTLs are enriched among the relatively few genes whose regulations in mature LCLs maintain marked individual signatures. We thus conclude that findings and insight drawn from gene regulatory studies in mature LCLs are generally not affected by artificial nature of the LCL model system and are likely to faithfully reflect regulatory interactions in primary tissues. However, our data indicate that many aspects of primary B cell biology cannot be observed and studied in mature LCL cultures.

Publication Title

The effect of freeze-thaw cycles on gene expression levels in lymphoblastoid cell lines.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26210
The effects of EBV transformation on gene expression
  • organism-icon Homo sapiens
  • sample-icon 82 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) provide a conveniently accessible and renewable resource for functional studies in humans. The ability to accumulate multidimensional data pertaining to the same individual cell lines, from complete genomic sequences to detailed gene regulatory profiles, further enhances the utility of LCLs as a model system. A lingering concern, however, is that the changes associated with EBV transformation of LCLs reduce the usefulness of LCLs as a surrogate model for primary tissues. To evaluate the validity of this concern, we compared global gene expression profiles between CD20+ primary B cells and CD3+ primary T cells sampled from six individuals. Six independent replicates of transformed LCLs were derived from each sample.

Publication Title

The effects of EBV transformation on gene expression levels and methylation profiles.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE21829
Differential gene expression in adrenal medulla after cardiac pressure overload
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptom analysis of microdissect adrenal medulla after 8 weeks of cardiac pressure overload caused by transverse aortic constriction.

Publication Title

Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP041955
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The use of low quality RNA samples in whole-genome gene expression profiling remains controversial. It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of degradation can be normalized, or whether different transcripts are degraded at different rates, potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA samples in whole-genome expression profiling problematic. Yet, low quality samples are at times the sole means of addressing specific questions – e.g., samples collected in the course of fieldwork.

Publication Title

RNA-seq: impact of RNA degradation on transcript quantification.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP097631
Sub-populations in the mammary repopulating units
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Elucidating the top of the mammary epithelial cell hierarchy is highly important for understanding its regeneration capabilities and identifying target cells for transformation. Aiming for enriched mammary epithelial stem cell population, CD200highCD200R1high epithelial cells were identified. These cells represent ~50% of the mammary repopulating units (MRUs, CD49fhigh CD24med ) and termed MRUCD200/CD200R1. Gene expression of these cells was compared to all other MRU cells, termed MRUnot CD200/CD200R1, as well as individual CD200+ population (MRU-CD200R1-) and CD200R1+ population (MRU-CD200-). Overall design: Gene expression from mammary epithelial cells carrying sorted by CD200, CD200R1 markers and MRU markers. Four populations were sequenced: MRU-positive CD200 positive and CD200R1 positive; MRU-positive and not CD200 positive CD200R1 positive; not MRU CD200 positive CD200R1 negative; not MRU CD200 negative CD200R1 positive. There are 5 replicates from 5 individual mice.

Publication Title

High Expression of CD200 and CD200R1 Distinguishes Stem and Progenitor Cell Populations within Mammary Repopulating Units.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact