refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 132 results
Sort by

Filters

Technology

Platform

accession-icon GSE71865
Depletion of the Chromatin Remodeler CHD4 Sensitizes AML Blasts to Genotoxic Agents and Reduces Tumor Formation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Depletion of CHD4 sensitizes AML cells but not normal CD34+ progenitors to genotoxic agents by relaxing chromatin and impairing DSB repair.

Publication Title

Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66782
Genome-wide analysis of LPS or PBS challenged DUSP3-KO and WT female mice peritoneal macrophages gene expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of gene expression profile in peritoneal macrophage extracted from LPS or PBS challenged DUSP3-/- and WT mice. DUSP3 deletion protects mice from sepsis and endotoxemia. We performed a microarray analysis to get insights into the differentially regulated pathways between WT and KO under inflammatory conditions.

Publication Title

DUSP3 Genetic Deletion Confers M2-like Macrophage-Dependent Tolerance to Septic Shock.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP189661
A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. [scRNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 62 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

While the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less understood. By dissecting border regions and combining single-cell RNA sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny and subsets displayed distinct self-renewal capacities upon depletion and repopulation. Single-cell and fate-mapping analysis both suggested there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host-macrophage interactions in the healthy and diseased brain. Overall design: sample of WT choroid plexus, sample of WT dura mater, sample of WT enriched SDM, sample of WT whole brain, sample of 9 months old APP/PS1 mice, sample of 16 months old APP/PS1 mice, sample of 16 months old WT mice, sample of Irf8 KO whole brain, sample of Irf8 KO choroid plexus, sample of Irf8 WT whole brain, sample of Irf8 WT choroid plexus, sample of dura mater with standard protocol and with ActD protocol, sample of choroid plexus with standard protocol and ActD protocol.

Publication Title

A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE68014
Gene profiling of human HOS cell line over-expressed with miR-23a and differentiated by beta-glycerophosphate (BGP) treatment
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

miR-23a impairs bone differentiation in osteosarcoma via down-regulation of GJA1.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE68012
Gene expression profiling of human HOS cell line differentiated by beta-glycerophosphate (BGP) treatment
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Human HOS cell line was differentiated by beta-glycerophosphate (BGP) treatment and gene expression profiling was studied with Illumina expression microarray (HumanHT12_V4).

Publication Title

miR-23a impairs bone differentiation in osteosarcoma via down-regulation of GJA1.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE68013
Gene expression profiling of human HOS cell line overexpressed with miR23a
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Human HOS cell line was overexpressed with miR23a and gene expression profiling was studied with Illumina expression microarray (HumanHT12_V4).

Publication Title

miR-23a impairs bone differentiation in osteosarcoma via down-regulation of GJA1.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE117081
The Transcription factor Zeb2 ia required to maintain tissue-specific identities of macrophages
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE117080
The Transcription factor Zeb2 ia required to maintain tissue-specific identities of macrophages [microarray]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Microarray, Bulk RNA Sequencing and Single cell RNA Sequencing of different murine tissue-resident macrophage populations to assess role of Zeb2 and LXRa

Publication Title

The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38609
Brain transcriptional and epigenetic associations with the autistic phenotype
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HumanMethylation27 BeadChip (HumanMethylation27_270596_v.1.2), Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Brain transcriptional and epigenetic associations with autism.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE38322
Brain transcriptional and epigenetic associations with the autistic phenotype (expression data)
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HumanMethylation27 BeadChip (HumanMethylation27_270596_v.1.2), Illumina HumanHT-12 V4.0 expression beadchip

Description

Autism is a common neurodevelopmental syndrome. Numerous rare genetic etiologies are reported; most cases are idiopathic. To uncover important gene dysregulation in autism we analyzed carefully selected idiopathic autistic and control cerebellar and BA19 (occipital) brain tissues using high resolution whole genome gene expression and DNA methylation microarrays. No changes in DNA methylation were identified in autistic brain but gene expression abnormalities in two areas of metabolism were apparent: down-regulation of genes of mitochondrial oxidative phosphorylation and of protein translation. We also found associations between specific behavioral domains of autism and specific brain gene expression modules related to myelin/myelination, inflammation/immune response and purinergic signaling. This work highlights two largely unrecognized molecular pathophysiological themes in autism and suggests differing molecular bases for autism behavioral endophenotypes.

Publication Title

Brain transcriptional and epigenetic associations with autism.

Sample Metadata Fields

Age

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact