refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 916 results
Sort by

Filters

Technology

Platform

accession-icon SRP095272
Analysis of parent-of-origin bias in gene expression levels
  • organism-icon Homo sapiens
  • sample-icon 325 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In order to study parent-of-origin effects on gene expression, we performed RNAseq analysis (100bp single end reads) of 165 children who formed part of mother/father/child trios where genotype data was available from the HapMap and/or 1000 Genomes Projects. Based on phased genotypes at heterozygous SNP positions, we generated allelic counts for expression of the maternal and paternal alleles in each individual. This analysis reveals significant bias in the expression of the parental alleles for dozens of genes, including both previously known and novel imprinted transcripts. Overall design: This submission contains RNAseq data from 165 children from mother/father/child trios studied as part of the 1000 genomes and/or HapMap projects. We provide raw fastq format reads, and processed read counts per gene. Allelic count information can be provided by directly contacting the authors.

Publication Title

RNA-Seq in 296 phased trios provides a high-resolution map of genomic imprinting.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE115313
Transcriptomics analysis of paired tumor and normal mucosa samples in a cohort of patients with colon cancer, with and without T2DM.
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This is a transcriptomics analysis contributing to a bigger project that tries to shed light on the role of type 2 diabetes mellitus (T2DM) as a risk factor for colon cancer (CC). Here we present a gene expression screening of paired tumor and normal colon mucosa samples in a cohort of 42 CC patients, 23 of them with T2DM. Using gene set enrichment, we identified an unexpected overlap of pathways over-represented in diabetics compared to non-diabetics, both in tumor and normal mucosa, including diabetes-related metabolic and signaling processes. An integration with other -omic studies suggests that in diabetics, the local micro-environment in normal colon mucosa may be a factor driving field cancerization which may promote carcinogenesis. Several of these pathways converged on the tumor initiation axis TEAD/YAP-TAZ. Cell culture studies confirmed that high glucose concentrations upregulate this pathway in non-tumor colon cells. In conclusion, diabetes is associated to deregulation of cancer-related processes in normal colon mucosa adjacent to tissue which has undergone a malignant transformation. These data support the existence of the field of cancerization paradigm in diabetes and set a new framework to study link between diabetes and cancer.

Publication Title

Molecular evidence of field cancerization initiated by diabetes in colon cancer patients.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE115329
Transcriptomics analysis of Colon tumor xenograft model in streptozotocin-induced diabetic mice
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This is a transcriptomics analysis contributing to a bigger project that tries to shed light on the role of type 2 diabetes mellitus (T2DM) as a risk factor for colon cancer (CC). Here we present a gene expression screening of 7 colon tumor xenograft samples, 2 with diabetic mice and 5 with normal blood glucose levels. For xenograft model details see: Prieto I, et al. (2017) Colon cancer modulation by a diabetic environment: A single institutional experience. PLoS One 12(3):e0172300

Publication Title

Molecular evidence of field cancerization initiated by diabetes in colon cancer patients.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22971
Expression data from MMP-8 wild type and KO mice with or without arthritis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Rheumatoid arthritis is an autoimmune disease in which joint inflammation lead to progressive cartilage and bone destruction. Matrix metalloproteinases (MMP) implicated in homeostasis of extracellular matrix (ECM) play a central role in cartilage degradation. The aim of this study was to investigate the role of MMP-8 (collagenase-2) suppression in the K/BxN serum-transfer arthritis model.

Publication Title

Matrix metalloproteinase-8 deficiency increases joint inflammation and bone erosion in the K/BxN serum-transfer arthritis model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE87109
Conserved and species-specific molecular denominators in mammalian skeletal muscle aging
  • organism-icon Macaca mulatta, Mus musculus, Homo sapiens, Rattus norvegicus
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina ratRef-12 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87105
Conserved and species specific molecular denominators in mammalian aging [human]
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Aging is a complex phenomenon involving functional decline in multiple physiological systems. We focused on skeletal muscle to identify pathways that modulate function and healthspan by global expression profiles and specific mechanisms fundamental to aging processes. Our experimental design integrated comparative analysis of mice, rats, rhesus monkeys and humans and targeted three key time points during their lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species with age. Notably, mitochondrial transcript levels were better preserved in aging human muscle, suggesting an evolution-driven fitness more robust than in other species. The identification of these conserved pathways uncovers common molecular mechanisms intrinsic to health and lifespan, while unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87107
Conserved and species specific molecular denominators in mammalian aging [rat]
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Aging is a complex phenomenon involving functional decline in multiple physiological systems. We focused on skeletal muscle to identify pathways that modulate function and healthspan by global expression profiles and specific mechanisms fundamental to aging processes. Our experimental design integrated comparative analysis of mice, rats, rhesus monkeys and humans and targeted three key time points during their lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species with age. Notably, mitochondrial transcript levels were better preserved in aging human muscle, suggesting an evolution-driven fitness more robust than in other species. The identification of these conserved pathways uncovers common molecular mechanisms intrinsic to health and lifespan, while unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87108
Conserved and species specific molecular denominators in mammalian aging [mouse]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Aging is a complex phenomenon involving functional decline in multiple physiological systems. We focused on skeletal muscle to identify pathways that modulate function and healthspan by global expression profiles and specific mechanisms fundamental to aging processes. Our experimental design integrated comparative analysis of mice, rats, rhesus monkeys and humans and targeted three key time points during their lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species with age. Notably, mitochondrial transcript levels were better preserved in aging human muscle, suggesting an evolution-driven fitness more robust than in other species. The identification of these conserved pathways uncovers common molecular mechanisms intrinsic to health and lifespan, while unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE12583
Highly efficient generation of induced pluripotent stem cells from human keratinocytes
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The generation of induced pluripotent stem (iPS) cells 1-4 has spawned unprecedented opportunities for investigating the molecular logic that underlies cellular pluripotency and reprogramming, as well as for obtaining patient-specific cells for future clinical applications. However, both prospects are hampered by the low efficiency of the reprogramming process. Here, we show that juvenile human primary keratinocytes can be efficiently reprogrammed to pluripotency by retroviral transduction with Oct4, Sox2, Klf4 and c-Myc. Keratinocyte-derived iPS (KiPS) cells appear indistinguishable from human embryonic stem (hES) cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, as well as in vitro and in vivo differentiation potential. Notably, keratinocyte reprogramming to pluripotency is, at least, 100-fold more efficient and 2-fold faster than that of fibroblasts. This increase in reprogramming efficiency allowed us to expand the practicability of the technology and to generate KiPS cells from single plucked hairs from adult individuals.

Publication Title

Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62529
Infection exposure is a causal factor in B-precursor acute lymphoblastic leukemia as a result of Pax5 inherited susceptibility
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to investigate gene expression changes in tumor-bearing Pax5+/- mice

Publication Title

Infection Exposure is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact