refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 125 results
Sort by

Filters

Technology

Platform

accession-icon SRP068078
Methylomes and Transcriptomes of Human Pluripotent-to-Cardiomyocyte Differentiation [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

In this report, Tompkins et al describe the derivation, differentiation stage-specific purification, and genome-wide analysis of cardiomyocytes derived from hESCs. Key features of the molecular programs that define human cardiac muscle cell differentiation were described and researchers observed that cells may harbor epigenetic DNA methylation “memories” that reflect the gene activation history of important developmental genes. Overall design: For RNA-seq. Cardiomyocyte differentiation from human embryonic stem cells (H7). 11 time point pilot time series. D3 and D4 samples FACS sorted for primitive and cardiac mesoderm isolation, respectively. Data from negatives sorts (minus) included as well.

Publication Title

Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation "Memories".

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP070670
FOXF1 inhibits endothelial barrier function in the lung and transcriptionally activates the gene for the S1PR1 receptor
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Multiple signaling pathways, structural proteins and transcription factors are involved in regulation of endothelial barrier function. The Forkhead protein FOXF1 is a key transcriptional regulator of lung embryonic development, and we use a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis and lung injury and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1 caused lung inflammation and edema, leading to respiratory insuffency and uniform mortality. Deletion of a single foxf1 allele was sufficient to increase susceptibility of heterozygous mice to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells of FOXF1 deletion indicated reduced expression for genes critical for maintance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, increased lung endothelial permeability, and the abundance of mRNA and protein for sphingosine 1 phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assay demonstrated that FOXF1 directly bound to and induced the tanscriptional activity of the S1pr1 promoter. Pharmacological administratiion of S1P to injured pdgfb-iCreER/Foxf1 mice restored endothelial barrier function, decreased lung edema and improved survival. Thus, FOXF1 promotes normal lung homeostasis and lung repair, at least in part, by enhancing endothelial barrier function through transcriptional activation of the S1P/S1PR1/ signaling pathway. Overall design: RNA was isolated and pooled from the lungs of multiple mice with either the Foxf1 floxed alleles alone or Pdgfb-iCreER Foxf1 floxed mice.

Publication Title

FOXF1 maintains endothelial barrier function and prevents edema after lung injury.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE138587
Target genes of miR-361-3p in human oral squamous cell carcinoma cells, GFP-SAS
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Inhibition of miR-361-3p by locked nucleic acid (LNA)/DNA antisense oligonucleotide markedly suppressed the growth of GFP-SAS cells.

Publication Title

MicroRNA-361-3p is a potent therapeutic target for oral squamous cell carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP065040
A Primate lncRNA Mediates Notch Signaling During Neuronal Development by Sequestering miRNA [single cell sequencing analysis]
  • organism-icon Homo sapiens
  • sample-icon 240 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Long non-coding RNAs (lncRNAs) are a diverse category of transcripts with poor conservation and have expanded greatly in primates, particularly in their brain. We identified a lncRNA, which has acquired 16 microRNA response elements (MREs) for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) gets expressed in neural progenitor cells and then declines in mature neurons. Binding and release of miR-143-3p, by LncND, can control the expression of Notch. Its expression is highest in radial glia cells in the ventricular and outer subventricular zones of human fetal brain. Down-regulation of LncND in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression and supported by RNA-seq analysis. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling in the expansion of the neural progenitor pool of primates and hence contributing to the rapid growth of the cerebral cortex. Overall design: Cerebral organoids were generated as in Lancaster et al. (Lancaster and Knoblich, 2014). Organoids were dissociated into single cells and captured on C1 Single-Cell Auto Prep Integrated Fluidic Circuit (IFC) (Fluidigm). The RNA extraction and amplification was performed on the chip as described by the manufacturer. We captured 68 single-cells on a C1 Single-Cell Auto Prep System (Fluidigm) and sequenced the RNA on a NextSeq500 System (Illumina) (Pollen et al., 2014). Out of 68 cells, we obtained 60 high quality cells.

Publication Title

A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP064761
A Primate lncRNA Mediates Notch Signaling During Neuronal Development by Sequestering miRNA [SHSY5Y cells]
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Long non-coding RNAs (lncRNAs) are a diverse category of transcripts with poor conservation and have expanded greatly in primates, particularly in their brain. We identified a lncRNA, which has acquired 16 microRNA response elements (MREs) for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) gets expressed in neural progenitor cells and then declines in mature neurons. Binding and release of miR-143-3p, by LncND, can control the expression of Notch. Its expression is highest in radial glia cells in the ventricular and outer subventricular zones of human fetal brain. Down-regulation of LncND in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression and supported by RNA-seq analysis. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling in the expansion of the neural progenitor pool of primates and hence contributing to the rapid growth of the cerebral cortex. Overall design: SHSY5Y cells treated either with miR-143-3p mimic or 100 nM of siRNA specific for LncND were sequenced on NextSeq500 platform. Scrambled siRNA or miRNA sequences were used as a negative control.

Publication Title

A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059624
Primary cilium-autophagy-Nrf2 (PAN) axis links the cell cycle to neuroectoderm fate in human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

Under defined differentiation conditions human embryonic stem cells (hESCs) can be directed toward a mesendodermal (ME) or neuroectoderm (NE) fate, the first decision during hESC differentiation. Coupled with G1 lengthening a divergent ciliation pattern emerged within the first 24 hours of induced lineage specification and these changes heralded a neuroectoderm decision before any neural precursor markers were expressed. By day 2, increased ciliation in NE precursors induced autophagy that resulted in the inactivation of Nrf2. Nrf2 binds directly to upstream regions of the OCT4 and NANOG genes to promote their expression and represses NE derivation. Nrf2 suppression was sufficient to rescue poorly neurogenic iPSC lines. Only after these events have been initiated do neural precursor markers get expressed at day 4. Thus we have identified a primary cilium-autophagy-Nrf2 (PAN) axis coupled to cell cycle progression that directs hESCs toward NE. Overall design: Transcriptome analysis of hESC-derived neuroectoderm and mesendoderm cells

Publication Title

Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6885
Transformed Human Breast Epithelial Cell Types vs. Normal Cell-of-Origin
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The gene expression of two different tumorigenic human breast epithelial cell types (HMLER and BPLER) is compared with their immortalized parental cell-of-origin (HME and BPE).

Publication Title

Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE102016
Expression profile from mouse lung treated with B[a]P and LPS
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Patients with inflammatory lung diseases are often additionally exposed to polycyclic aromatic hydrocarbons like B[a]P and B[a]P-induced alterations in gene expression in these patients may contribute to the development of lung cancer. Mice were intra-nasally treated with lipopolysaccharide (LPS, 20 g/mouse) to induce pulmonary inflammation and subsequently exposed to B[a]P (0.5 mg/mouse) by intratracheal instillation

Publication Title

Altered gene expression profiles in the lungs of benzo[a]pyrene-exposed mice in the presence of lipopolysaccharide-induced pulmonary inflammation.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE11769
Analysis of ectopic human endometrium and peritoneal tissues in nude mice
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11768
Nude mouse model of endometriosis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The pathophysiology of endometriotic lesion development remains unclear but involves a complex interaction between ectopic endometrium and host peritoneal tissues. We hypothesised that disruption of this interaction was likely to suppress endometriotic lesion formation. We hoped to delineate the molecular and cellular dialogue between ectopic human endometrium and peritoneal tissues in nude mice, as a first step towards testing this hypothesis. Human endometrium was xenografted into nude mice and the resulting lesions were analysed using microarrays. A novel technique was developed that unambiguously determined whether RNA transcripts identified by the microarray analyses originated from human cells (endometrium) or mouse cells (stroma). Four key pathways (ubiquitin/proteosome, inflammation, tissue remodelling/repair and ras-mediated oncogenesis) were revealed, that demonstrated communication between host stromal cells and ectopic endometrium.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact