refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 132 results
Sort by

Filters

Technology

Platform

accession-icon GSE49039
Comparison of gene expression from thymocyte populations and equivalent OP9-DL1 cultured cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Comparison between ex vivo immature, mature and stimulated T cells and in vitro generated counterparts. The T cells generated in vitro were cultured on OP9-DL1 stroma supplied with growth factors.

Publication Title

In vitro generation of mature, naive antigen-specific CD8(+) T cells with a single T-cell receptor by agonist selection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48680
Glucocorticoid effect on mRNA translation in childhood acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: huex10stv2_67_020 (huex10st)

Description

Glucocorticoids (GCs) are a central component in treating childhood acute lymphoblastic leukemia (chALL). They mainly act via regulating gene transcription. However, control of mRNA translation by GC has never been assessed systematically. In our research, T- and precursor B-ALL cells were cultured with and without GC for 6 hours and subjected to translational profiling, a technique combining sucrose gradient fractionation and microarray analysis of mRNA in different fractions. Analysis of GC regulation in different pools revealed no significant differences in regulation of mRNA translation by GC, suggesting no evidence for translational regulation by GC.

Publication Title

Translational profiling in childhood acute lymphoblastic leukemia: no evidence for glucocorticoid regulation of mRNA translation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE10408
Triazole Antifungal Toxicogenomics: GeneLogic_Triazoles
  • organism-icon Rattus norvegicus
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The modes of triazole reproductive toxicity have been characterized by an observed increased in serum testosterone and reduced insemination and fertility indices. The key events involved in the disruption in testosterone homeostasis and reduced fertility remain unclear. Gene expression analysis was conducted on liver from Sprague Dawley rats dosed with myclobutanil (300 mg/kg/day) or triadimefon (175 mg/kg/day) for 6, 24 or 336 hours. Pathway-based analysis highlighted key biological processes affected by all three triazoles in the liver including fatty acid catabolism, steroid metabolism, and xenobiotic metabolism. Within the pathways identified in the liver, specific genes involved in phase I-III metabolism and fatty acid metabolism were affected by all three triazoles. These modulated genes are part of a network of lipid and testosterone homeostasis pathways regulated by the constitutive androstane (CAR) and pregnane X (PXR) receptors. Gene expression profiles from this study indicate triazoles activate CAR and PXR; increase fatty acid catabolism and steroid metabolism in the liver; constituting a plausible series of key events contributing to the observed disruption in testosterone homeostasis.

Publication Title

Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10410
Triazole Antifungal Toxicogenomics: human_primary_hepatocytes_CellzDirect
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The triazole antifungals myclobutanil (MYC), propiconazole (PPZ) and triadimefon (TDF) [Propiconazole CASNR 60207-90-1; Triadimefon CASNR 43121-43-3; Myclobutanil CASNR 88671-89-0] all disrupt steroid hormone homeostasis and cause varying degrees of hepatic toxicity. To identify biological pathways consistently activated across various study designs, gene expression profiling was conducted on livers from rats following acute, repeated dose, or prenatal to adult exposures. To explore conservation of responses across species, gene expression from these rat in vivo studies were also compared to in vitro data from rat and human primary hepatocytes exposed to MYC, PPZ, or TDF. Pathway and gene level analyses across time of exposure, dose, and species identified patterns of expression common to all three triazoles, which were also conserved between rodents and humans. Pathways affected included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Many of the differentially expressed genes are regulated by the nuclear receptors CAR, PPAR alpha and PXR, including ABC transporter genes (Abcb1 and MDR1), genes significant to xenobiotic, fatty acid, sterol and steroid metabolism (Cyp2b2 and CYP2B6; Cyp3a1 and CYP3A4; Cyp4a22 and CYP4A11) and xxx (Ugt1a1 and UGT1A1). Modulation of hepatic sterol and steroid metabolism is a plausible mechanism for triazole induced increases in serum testosterone. The gene expression changes caused by all three triazoles appear to focus on pathways regulating lipid and testosterone homeostasis, identifying potential common mechanisms of triazole hepatotoxicity that are conserved between rodents and humans.

Publication Title

Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10411
Triazole Antifungal Toxicogenomics: rat_repro_Liver
  • organism-icon Rattus norvegicus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The modes of triazole reproductive toxicity have been characterized by an observed increased in serum testosterone and reduced insemination and fertility indices. The key events involved in the disruption in testosterone homeostasis and reduced fertility remain unclear. Gene expression analysis was conducted on liver and testis from Wistar Han IGS rats fed myclobutanil (M: 500, 2000 ppm), propiconazole (P: 500, 2500 ppm), or triadimefon (T: 500, 1800 ppm) from gestation day six to postnatal day 92. Pathway-based analysis highlighted key biological processes affected by all three triazoles in the liver including fatty acid catabolism, steroid metabolism, and xenobiotic metabolism. Triadimefon induced a distinctive expression profile of genes involved in liver sterol biosynthesis. There were no common pathways modulated by all three triazoles in the testis. Within the pathways identified in the liver, specific genes involved in phase I-III metabolism (Aldh1a1, Cyp1a1, Cyp2b2, Cyp3a1, Slco1a4, Udpgtr2), fatty acid metabolism (Cyp4a10, Pc, Ppap2b), and steroid metabolism (Srd5a1, Ugt1a1, Ugt2a1) were affected by all three triazoles. These modulated genes are part of a network of lipid and testosterone homeostasis pathways regulated by the constitutive androstane (CAR) and pregnane X (PXR) receptors. Gene expression profiles from this study indicate triazoles activate CAR and PXR; increase fatty acid catabolism, sterol biosynthesis, and steroid metabolism in the liver; constituting a plausible series of key events contributing to the observed disruption in testosterone homeostasis.

Publication Title

Mode of action for reproductive and hepatic toxicity inferred from a genomic study of triazole antifungals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9387
Triazole Antifungal Toxicogenomics: rat_primary_hepatocyte_CellzDirect
  • organism-icon Rattus norvegicus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The triazole antifungals myclobutanil (MYC), propiconazole (PPZ) and triadimefon (TDF) all disrupt steroid hormone homeostasis and cause varying degrees of hepatic toxicity. To identify biological pathways consistently activated across various study designs, gene expression profiling was conducted on livers from rats following acute, repeated dose, or prenatal to adult exposures. To explore conservation of responses across species, gene expression from these rat in vivo studies were also compared to in vitro data from rat and human primary hepatocytes exposed to MYC, PPZ, or TDF. Pathway and gene level analyses across time of exposure, dose, and species identified patterns of expression common to all three triazoles, which were also conserved between rodents and humans. Pathways affected included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Many of the differentially expressed genes are regulated by the nuclear receptors CAR, PPAR alpha and PXR, including ABC transporter genes (Abcb1 and MDR1), genes significant to xenobiotic, fatty acid, sterol and steroid metabolism (Cyp2b2 and CYP2B6; Cyp3a1 and CYP3A4; Cyp4a22 and CYP4A11) and xxx (Ugt1a1 and UGT1A1). Modulation of hepatic sterol and steroid metabolism is a plausible mechanism for triazole induced increases in serum testosterone. The gene expression changes caused by all three triazoles appear to focus on pathways regulating lipid and testosterone homeostasis, identifying potential common mechanisms of triazole hepatotoxicity that are conserved between rodents and humans.

Publication Title

Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10412
Triazole Antifungal Toxicogenomics: rat_repro_Testis
  • organism-icon Rattus norvegicus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The modes of triazole reproductive toxicity have been characterized by an observed increased in serum testosterone and reduced insemination and fertility indices. The key events involved in the disruption in testosterone homeostasis and reduced fertility remain unclear. Gene expression analysis was conducted on liver and testis from Wistar Han IGS rats fed myclobutanil (M: 500, 2000 ppm), propiconazole (P: 500, 2500 ppm), or triadimefon (T: 500, 1800 ppm) from gestation day six to postnatal day 92. Pathway-based analysis highlighted key biological processes affected by all three triazoles in the liver including fatty acid catabolism, steroid metabolism, and xenobiotic metabolism. Triadimefon induced a distinctive expression profile of genes involved in liver sterol biosynthesis. There were no common pathways modulated by all three triazoles in the testis. Within the pathways identified in the liver, specific genes involved in phase I-III metabolism (Aldh1a1, Cyp1a1, Cyp2b2, Cyp3a1, Slco1a4, Udpgtr2), fatty acid metabolism (Cyp4a10, Pc, Ppap2b), and steroid metabolism (Srd5a1, Ugt1a1, Ugt2a1) were affected by all three triazoles. These modulated genes are part of a network of lipid and testosterone homeostasis pathways regulated by the constitutive androstane (CAR) and pregnane X (PXR) receptors. Gene expression profiles from this study indicate triazoles activate CAR and PXR; increase fatty acid catabolism, sterol biosynthesis, and steroid metabolism in the liver; constituting a plausible series of key events contributing to the observed disruption in testosterone homeostasis.

Publication Title

Mode of action for reproductive and hepatic toxicity inferred from a genomic study of triazole antifungals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10409
Triazole Antifungal Toxicogenomics: Iconix3_Triazoles
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The modes of triazole reproductive toxicity have been characterized by an observed increased in serum testosterone and reduced insemination and fertility indices. The key events involved in the disruption in testosterone homeostasis and reduced fertility remain unclear. Gene expression analysis was conducted on liver from Sprague Dawley rats dosed with myclobutanil (300 mg/kg/day), propiconazole (300 mg/kg/day), or triadimefon (175 mg/kg/day) for 72 hours. Pathway-based analysis highlighted key biological processes affected by all three triazoles in the liver including fatty acid catabolism, steroid metabolism, and xenobiotic metabolism. Within the pathways identified in the liver, specific genes involved in phase I-III metabolism and fatty acid metabolism were affected by all three triazoles. These modulated genes are part of a network of lipid and testosterone homeostasis pathways regulated by the constitutive androstane (CAR) and pregnane X (PXR) receptors. Gene expression profiles from this study indicate triazoles activate CAR and PXR; increase fatty acid catabolism and steroid metabolism in the liver; constituting a plausible series of key events contributing to the observed disruption in testosterone homeostasis.

Publication Title

Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57917
Expression data from E14.5 Onecut1 WT and KO animals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In this study, we examine the consequences of the loss of two related factors, Onecut1 and Onecut2, during mouse retinal development.

Publication Title

Onecut1 and Onecut2 play critical roles in the development of the mouse retina.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57918
Expression data from adult Onecut2 WT and KO animals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In this study, we examine the consequences of the loss of two related factors, Onecut1 and Onecut2, during mouse retinal development and maturation.

Publication Title

Onecut1 and Onecut2 play critical roles in the development of the mouse retina.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact