refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 17 results
Sort by

Filters

Technology

Platform

accession-icon SRP066612
5''RNA-seq analysis of soleus, tibialis anterior (TA), diaphragm and left ventricle myocardial tissue from adult wild-type mice.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We applied a 5''RNA-seq methodology to assess gene and differential isoform expression in striated muscle tissues extracted from adult wild-type mice. Overall design: 5''RNA-seq analysis of transcriptomes from mouse soleus, tibialis anterior (TA), diaphragm and left ventricle myocardial tissues. Three biological replicates per tissue were pooled into a single sequencing run. 5''RNA-seq methodology consists of enhanced sequencing of 5'' ends and computational assessment of changes at start-sites of genes.

Publication Title

Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE47801
Genome-wide gene expression analysis on tibialis anterior muscle from nebulin SH3 domain deleted (NebSH3) mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Genome-wide gene expression analysis on tibialis anterior muscle from 2-month-old nebulin SH3 domain deleted (NebSH3) mice compared to wildtype.

Publication Title

The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE17964
Discovery of novel imprinted genes by transcriptional analysis of parthenogenetic embryonic stem cells
  • organism-icon Macaca mulatta
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Parthenogenetic embryonic stem cells (PESCs) may have future utility in cell replacement therapies. We examined genome-wide mRNA expression profiles of monkey PESCs relative to ESCs derived from fertilized embryos. Several known paternally-imprinted genes were in the highly down-regulated group in PESCs compared to ESCs. Allele specific expression analysis of paternally-imprinted genes, i.e., those genes whose expression is down-regulated in PESCs, led to the identification of one novel candidate that was exclusively expressed from a paternal allele. Our findings suggest that PESCs could be used as a model for studying genomic imprinting and in the discovery of novel imprinted genes.

Publication Title

Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE7748
Transcriptional profiling of rhesus monkey nuclear transfer embryonic stem cells
  • organism-icon Macaca mulatta
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Derivation of embryonic stem cells (ESC) genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing any immunorejection issues. However, no primate nuclear transfer embryonic stem (ntES) cell lines have been derived to date. Here, we used a modified SCNT technique to produce rhesus macaque SCNT blastocysts at a relatively high efficiency from adult donor cells and we successfully derived two primate ntES cell lines from 304 oocytes (an overall efficiency of 0.7%). Nuclear and mitochondrial DNA analysis confirmed the ntES cell lines were derived from rhesus monkey SCNT blastocysts and both rhesus monkey ntES cell lines exhibited a normal ESC morphology, expressed key stemness markers, were transcriptionally indistinguishable from control ESC lines and differentiated into multiple cell types. This is, to our knowledge, the first confirmed derivation of primate ntES cell lines.

Publication Title

Producing primate embryonic stem cells by somatic cell nuclear transfer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE146756
Microarray analysis of Dorsal root ganglion (DRG) sensory neurons from the liver kinase B1 (LKB1) knockout
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal of this study is to uncover the changes in the transcriptome of sensory neurons of the liver kinase B1 (LKB1) knockout

Publication Title

Regulation of axonal morphogenesis by the mitochondrial protein Efhd1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41842
Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Medulloblastoma is a malignant brain tumor that occurs predominantly in children. Current risk stratification based on the clinical parameters is inadequate for accurate prognostication. In order to get a better understanding of medulloblastoma biology, miRNA profiling of medulloblastomas was carried out in parallel with the expression profiling of protein- coding genes.

Publication Title

Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP097576
Type I interferon signaling attenuates Regulatory T cells function in LCMV infection
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Regulatory T cells (Tregs) play a cardinal role in the immune system by suppressing detrimental autoimmune responses, but their role in acute and chronic infectious diseases remains unclear. We recently demonstrated that IFN-??? receptor (IFNAR) signaling promotes Treg function in autoimmunity. To dissect the functional role of IFNAR-signaling in Tregs during acute and chronic viral infection, we infected Treg-specific IFNAR deficient (IFNARfl/flxFoxp3YFP-Cre) mice with LCMV Armstrong and Clone-13. In both models, IFNARfl/flxFoxp3YFP-Cre mice Tregs expressed enhanced expression of Treg associated activation antigens. The enhanced activated phenotype was also seen when we compared the transcriptomes of IFNARfl/flxFoxp3YFP-Cre and wild type (WT) Tregs by RNA-Seq on day 25-post Clone-13 infection. LCMV-specific CD8+ T cells from IFNARfl/flxFoxp3YFP-Cre mice produced less antiviral IFN? and TNF? in both acute and chronic LCMV. In the chronic model, the numbers of anti-viral effector and memory CD8+ T cells were decreased in IFNARfl/flxFoxp3YFP-Cre mice and the effector CD4+ and CD8+ T cells exhibited a phenotype compatible with enhanced exhaustion. IFNARfl/flxFoxp3YFP-Cre mice cleared Armstrong infection normally, but had higher viral titers in sera, kidneys and lungs than WT mice during chronic infection. Thus, type I IFN signaling in Tregs is context-dependent, resulting in enhanced suppressor function in some models of autoimmunity, but decreased suppressor function in acute and chronic viral infection. Overall design: mRNA from Treg cells from 5 WT and 5 IFNAR deficient mice were analyzied by RNA-seq using Illumina HiSeq

Publication Title

Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP140469
Identification and single cell functional characterization of an endodermally-biased pluripotent sub-state in human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Human embryonic stem cells (hESC) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESC we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm biased stem cell state. Overall design: Examination of 4 different cell substates within one human embryonic stem cell line as determine by the expression status of GATA6 and SSEA3

Publication Title

Identification and Single-Cell Functional Characterization of an Endodermally Biased Pluripotent Substate in Human Embryonic Stem Cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP098571
Regulation of Lipids is Central to Replicative Senescence
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cellular replicative senescence, a state of permanent cell-cycle arrest that occurs following an extended period of cell division in culture, has been linked to organismal aging, tissue repair and tumorigenesis. In this study, we comparatively investigated the global lipid profiles and mRNA content of proliferating and senescent-state BJ fibroblast cells. We found that both the expression levels of lipid-regulating genes, as well as the abundance of specific lipid families, are actively regulated. We further found that 19 polyunsaturated triacylglycerol species showed the most prominent changes during replicative senescence. We argue that diversion of polyunsaturated fatty acids to glycerolipid biosynthesis could be responsible for the accumulation of specific triacylglycerols. This, in turn, could be one of the cellular mechanisms to prevent lipotoxicity under increased oxidative stress conditions observed during replicative senescence. Collectively, our results place regulation of specific lipid species to a central role during replicative senescence. Overall design: We sequence total RNA from 3 early PD and 3 senesent human BJ cell lines to detect the expressional differences between early PD and senescent cells.

Publication Title

Regulation of lipids is central to replicative senescence.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP091780
Impact of hypothermic preservation of mouse kidney resident immune cells
  • organism-icon Mus musculus
  • sample-icon 426 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

With the growing interest in studying primary tissue samples by single cell transcriptome analysis, there is an emerging demand for a preservation strategy that enables sample transportation and storage. In this study, we describe a simple and general strategy that preserves primary tissues at hypothermic temperature. Using FACS and single-cell RNAseq, we demonstrated the effectiveness of this strategy in maintaining cell viability, cell population heterogeneity, and cell transcriptome integrity for primary tissues that underwent up to 3 days of preservation. Overall design: Examine the impact of hypothermic preservation on mouse kidney resident immune cells over up to 4 days at single-cell resolution

Publication Title

High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis.

Sample Metadata Fields

Cell line, Subject, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact