refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 463 results
Sort by

Filters

Technology

Platform

accession-icon SRP070155
Single-cell transcriptomes of each cell of the C. elegans embryo until the 16-cell stage
  • organism-icon Caenorhabditis elegans
  • sample-icon 217 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

A prevalent hypothesis for the cell-to-cell coordination of the phenomena of early development is that a defined mixture of different mRNA species at specific abundances in each cell determines fate and behavior. With this dataset we explore this hypothesis by quantifying the abundance of every mRNA species in every individual cell of the early C. elegans embryo, for which the exact life history and fate is precisely documented. Overall design: Embryos of the 1-, 2-, 4-, 8- and 16-cell stage were dissected into complete sets of single cells, and each cell from each set was sequenced individually using SMARTer technology. 5-9 replicates were generated for each stage. Most cell identities were unknown upon sequencing, but were deduced from by their transcriptomes post hoc.

Publication Title

A Transcriptional Lineage of the Early C. elegans Embryo.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE30137
p53-dependent transcription program in HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In order to obtain a global picture regarding regulation of p53 in liver cells we used HepG2 hepatoma cells.We created two isogenic sub-cultures of HepG2 cells with altered expression of p53.

Publication Title

Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon E-MEXP-137
Transcription profiling of mouse NIH3T3 cells transformed with oncovav2 deprived of Serum
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Effect of the overexpression of the oncogenic form of the Vav2 protein in the NIH3T3 cell line under serum deprivation conditions. oncovav2-transformed NIH3T3 cells grown in serum-deprived medium (Vav2SD) are compared to the parental NIH3T3 controls under the same growth conditions (ContSD). Vav2SD cells are also compared to the oncovav2-transformed NIH3T3 cells growing exponentially and the NIH3T3 growing exponentially.

Publication Title

Microarray analysis of gene expression with age in individual nematodes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE22010
TMPRSS2:ERG promotes invasiveness and epithelial to mesenchymal transition in prostate cancer model
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Recently, a frequent chromosomal aberration fusing Androgen regulated TMPRSS2 promoter and the ERG gene (T/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between the T/ERG and other defective pathways in cancer progression however, the biological mechanism by which the T/ERG operates is yet to be determined. Using immortalized prostate epithelial cells (EP) model we were able to show that EP with the combination of androgen receptor(AR) and T/ERG(EP-AR T/ERG cell line) demonstrate an Epithelial to Mesenchymal Transition (EMT) manifested by a mesenchyme-like morphological appearance and behavior.

Publication Title

TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE74903
Assessing concordance of drug-induced transcriptional response in rodent liver and cultured hepatocytes
  • organism-icon Rattus norvegicus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived with would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH) from Drug Matrix (DM) and open TG-GATEs (TG), primary human hepatocytes (HPH) from TG, and mouse liver / HepG2 results from the Gene Expression Omnibus (GEO) repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1) gene level for 9071 high expression genes in rat liver, 2) gene set analysis (GSA) using canonical pathways and gene ontology sets, 3) weighted gene co-expression network analysis (WGCNA). Co-expression networks performed better than genes or GSA on a quantitative metric when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal low concordance for all methods. We investigate differences in the baseline state of cultured cells in the context of drug-induced perturbations in rat liver and highlight the striking similarity between toxicant-exposed cells in vivo and untreated cells in vitro.

Publication Title

Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE12691
Knockdown and overexpression of CIN-TCP genes
  • organism-icon Arabidopsis thaliana
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Leaf development has been monitored chiefly by following anatomical markers. Analysis of transcriptome dynamics during leaf maturation revealed multiple expression patterns that rise or fall with age or that display age specific peaks. These were used to formulate a digital differentiation index (DDI), based on a set of selected markers with informative expression during leaf ontogeny. The leaf-based DDI reliably predicted the developmental state of leaf samples from diverse sources and was independent of mitotic cell division transcripts or propensity of the specific cell type. When calibrated by informative root markers, the same algorithm accurately diagnosed dissected root samples. We used the DDI to characterize plants with reduced activities of multiple CINCINNATA (CIN)-TCP growth regulators. These plants had giant curled leaves made up of small cells with abnormal shape, low DDI scores and low expression of mitosis markers, depicting the primary role of CIN-TCPs as promoters of differentiation. Delayed activity of several CIN-TCPs resulted in abnormally large but flat leaves with regular cells. The application of DDI has therefore portrayed the CIN-TCPs as heterochronic regulators that permit the development of a flexible and robust leaf form through an ordered and protracted maturation schedule.

Publication Title

A protracted and dynamic maturation schedule underlies Arabidopsis leaf development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12676
Arabidopsis thaliana Ler developmental series
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Leaf development has been monitored chiefly by following anatomical markers. Analysis of transcriptome dynamics during leaf maturation revealed multiple expression patterns that rise or fall with age or that display age specific peaks. These were used to formulate a digital differentiation index (DDI), based on a set of selected markers with informative expression during leaf ontogeny. The leaf-based DDI reliably predicted the developmental state of leaf samples from diverse sources and was independent of mitotic cell division transcripts or propensity of the specific cell type. To calibrate and test the DDI a series of Arabidopsis shoot development was used (Efroni et al, 2008)

Publication Title

A protracted and dynamic maturation schedule underlies Arabidopsis leaf development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44962
Minor compensatory changes in SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats do not detract from their utility in the study of transporter-mediated pharmacokinetics.
  • organism-icon Rattus norvegicus
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Mdr1a-, Bcrp-, and Mrp2-knockout rats are a more practical species for ADME studies than murine models and previously demonstrated expected alterations in pharmacokinetics of various probe substrates. At present, gene expression and pathology changes were systematically studied in small intestine, liver, kidney, and brain tissue from male SAGE Mdr1a-, Bcrp-, and Mrp2-knockout rats versus wild-type Sprague Dawley controls. Gene expression data supported the relevant knockout genotype. As expected, Mrp2-knockout rats were hyperbilirubinemic and exhibited upregulation of hepatic Mrp3. Overall, few alterations were observed within 137 ADME-relevant genes. The two most consequential changes were upregulation of intestinal carboxylesterase in Mdr1a-knockouts and catechol-O-methyltransferase in all tissues of Bcrp-knockout rats. Previously reported upregulation of hepatic Mdr1b P-glycoprotein in proprietary Wistar Mdr1a-knockout rats was not observed in the SAGE counterpart investigated herein. Relative liver and kidney weights were 22-53% higher in all three knockouts, with microscopic increases in hepatocyte size in Mdr1a- and Mrp2-knockout rats, and glomerular size in Bcrp- and Mrp2-knockouts. Increased relative weight of clearing organs is quantitatively consistent with reported increases in clearance of drugs that are not substrates of the knocked-out transporter. Overall, SAGE knockout rats demonstrated modest compensatory changes, which do not preclude their general application to study transporter-mediated pharmacokinetics. However until future studies elucidate the magnitude of functional change, caution is warranted in rare instances of extensive metabolism by catechol-O-methyltransferase in Bcrp-knockouts and intestinal carboxylesterase in Mdr1a-knockout rats, specifically for molecules with free catechol groups and esters subject to gut wall hydrolysis.

Publication Title

Minor compensatory changes in SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats do not detract from their utility in the study of transporter-mediated pharmacokinetics.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE119559
The integrated stress response regulates cell health of cardiac progenitors
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The discovery of mammalian cardiac progenitor cells has suggested that the heart consists of not only terminally differentiated beating cardiomyocytes, but also a population of self-renewing stem cells with the potential to generate new cardiomyocytes (Anderson, Self et al. 2007; Bearzi, Rota et al. 2007; Wu, Chien et al. 2008). A consequence of longevity is continual exposure to environmental and xenobiotic stresses, and recent literature suggests that hematopoietic stem cell pools tightly control cell health through upregulation of the integrated stress response and consequent cellular mechanisms such as apoptosis. However, whether or not this biological response is conserved in progenitor cells for later lineages of tissue specific stem cells is not well understood. Using human induced pluripotent stem cells (iPSC) of both cardiac progenitor and mature cardiomyocyte lineages, we found that the integrated stress response was upregulated in the iPSC cardiac progenitors leading to an increased sensitivity for apoptosis relative to the mature cardiomyocytes. Of interest, C/EBP homologous protein (CHOP) signaling plays a mechanistic role in the cell death phenotype observed in iPSC progenitors, by which depletion of CHOP prevents cell death following cellular stress by thapsigargin exposure. Our studies suggest that the integrated stress response plays a unique role in maintaining iPSC cardiac progenitor cellular integrity by removing unhealthy cells via apoptosis following environmental and xenobiotic stresses, thus preventing differentiation and self-renewal of damaged cells.

Publication Title

The Integrated Stress Response Regulates Cell Health of Cardiac Progenitors.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE75802
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner (RNA 2015)
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact